Переменная в математике

Переменные в математике

В математике переменной может быть как реальная физическая величина, так и некая абстрактная величина, не отражающая процессов реального мира.

В математическом анализе и большинстве смежных разделов математики под переменной x {\displaystyle x} понимают каждый элемент некоторого множества, состоящего, например, из вещественных чисел. Фиксированный элемент этого множества — число называется значением переменной. Само множество называется областью изменения переменной.

Задание области изменения переменной эквивалентно заданию самой переменной.

  • Переменные обозначаются малыми буквами латинского или греческого алфавита (возможно, с индексами): x , y , ε {\displaystyle x,~y,~\varepsilon } .
  • Области изменения соответствующих переменных обозначаются обычно теми же символами, взятыми в фигурные скобки: { x } , { y } , { ε } {\displaystyle \left\{x\right\},~\left\{y\right\},~\left\{\varepsilon \right\}} .

При моделировании процессов переменные необходимо отличать от параметров, несмотря на то, что переменная в одном контексте может быть параметром в другом.

В прикладной статистике переменная — оценочный фактор или характеристика, индивидуальный или системный атрибут, изменение которых ожидается с течением времени или между отдельными лицами, например переменная возраст.

Переменная и неизвестное

Нужно отметить, что аналогично переменным обозначаются неизвестные в уравнениях, неравенствах и других подобных задачах, например в уравнении 2 x = 6 {\displaystyle 2x=6} , где буквой x {\displaystyle x} обозначено неизвестное, а не переменная, хотя эти понятия весьма схожи и зависят от контекста.

Суть различия между этими понятиями можно пояснить так.

Запись 2 x = 6 {\displaystyle 2x=6} можно, с одной стороны, трактовать как утверждение о возможности найти значение неизвестного x {\displaystyle x} . В этом случае x {\displaystyle x} — обозначение неизвестного числа.

С другой стороны запись 2 x = 6 {\displaystyle 2x=6} можно трактовать как предикат, принимающий значение «истина» при одних значениях x {\displaystyle x} , и значение «ложь» при других. В этом случае x {\displaystyle x} — переменная. На её место в выражении могут подставляться различные значения с целью определения логического (булева) значения записанного предиката.

История

В середине XVII века у Рене Декарт предложил использовать для известных параметров начальные буквы алфавита: a , b , c … , {\displaystyle a,b,c\dots ,} а для неизвестных — последние буквы: x , y , z . {\displaystyle x,y,z.} Декарт не объяснял свой выбор. Некоторые историки пытались объяснить выбор буквы x {\displaystyle x} в качестве неизвестной. Так, например, словарь Уэбстера (1909—1916) утверждал, что переменная x {\displaystyle x} появилась как транскрипция арабской буквы ش — первой буквой в слове شيء‎, которое переводится на русский языка как «что-то», «нечто». Тем не менее эта и другие подобные версии не находят подтверждений и игнорируют тот факт, что Декарт использовал наряду с x {\displaystyle x} еще y {\displaystyle y} и z {\displaystyle z} .

Декарт считал значения переменных всегда неотрицательными, а отрицательные величины отражал знаком «минус» перед переменной. Если знак коэффициента был неизвестен, Декарт ставил многоточие. Нидерландский математик Иоганн Худде уже в 1657 году позволил буквенным переменным принимать значения любого знака.

Ф. Кэджори характеризует декартовскую запись степеней как самую удачную и гибкую символику во всей алгебре — она не только облегчает преобразования, но стимулировала расширение понятия возведения в степень на отрицательные, дробные и даже комплексные показатели, а также появление в математике степенной и показательной функции; все эти достижения трудно было бы осуществить при использовании обозначений XVI века

Примечания

  1. В. А. Ильин, В. А. Садовничий, Бл. Х. Сендов. Глава 3. Теория пределов // Математический анализ / Под ред. А. Н. Тихонова. — 3-е изд., перераб. и доп. — М.: Проспект, 2006. — Т. 1. — С. 105—121. — 672 с. — ISBN 5-482-00445-7.
  2. History of Mathematical Notations, vol. 1, 2007, §340.
  3. Jeff Miller. Earliest Uses of Symbols for Variables (англ.). Проверено 22 августа 2015.
  4. История математики, том II, 1970, с. 40—46.
  5. History of Mathematical Notations, vol. 2, 2007, §392.
  6. History of Mathematical Notations, vol. 1, 2007, §315.

> Литература

Переме́нная — атрибут физической или абстрактной системы, который может изменять своё значение. Значение может меняться в зависимости от контекста, в котором рассматривается система, или в случае уточнения, о какой конкретно системе идёт речь. Концепция переменной широко используется в таких областях как математика, естественные науки, техника и программирование. Примерами переменных могут служить температура воздуха, параметр функции и многое другое. В широком смысле, переменная характеризуется лишь множеством значений, которые она может принимать.

В математике переменная — это величина, характеризующаяся множеством значений, которое она может принимать. При этом может иметься в виду как реальная физическая величина, временно рассматриваемая в отрыве от своего физического контекста, так и некая абстрактная величина, не имеющая никаких аналогов в реальном мире. В математическом анализе и большинстве смежных разделов математики под «переменной» обычно понимают численную величину, множество принимаемых значений которой включено в множество вещественных чисел.

Множество всех значений, которые может принимать данная переменная, называется областью изменения этой переменной. Это множество и задаёт переменную, то есть формально и является ей.

При моделировании переменные необходимо отличать от параметров, несмотря на то что переменная в одном контексте может быть параметром в другом.

В прикладной статистике переменная — оценочный фактор, или характеристика, или индивидуальный или системный атрибут. Иными словами, нечто, изменение чего ожидается с течением времени или между отдельными лицами.

Обозначения

  • Переменные обозначаются малыми буквами латинского или греческого алфавита (возможно, с индексами): .
  • Области изменения соответствующих переменных обозначаются обычно теми же символами, взятыми в фигурные скобки: .

Нужно отметить, что аналогичным образом обозначаются неизвестные в уравнениях, неравенствах и других подобных задачах. Например, . В этом случае имеются ввиду не переменные, хотя понятия весьма схожи и зависят от контекста.

Суть этого различия между неизвестной и переменной можно пояснить так. Запись можно, с одной стороны, трактовать как утверждение о свойстве неизвестной (в момент высказывания утверждения) величины , значение которой можно найти (или уточнить), отталкиваясь от приведенного утверждения как от исходной посылки. В этом случае будет обозначением конкретной, но до проведения выкладок (например, решения уравнения) неизвестной величины. С другой стороны запись можно трактовать как предикат, принимающий значение «истина» при одних значениях, подставляемых на место , и значение «ложь» при других. В этом случае является обозначением места в выражении, на которое могут подставляться различные (переменные) значения с целью определения логического (булева) значения записанного предиката. В этом случае правильнее рассматривать как переменную.

Основная статья: Переменная (программирование)

В программировании переменная — это идентификатор, определяющий данные. Обычно это бывает имя, скрывающее за собой область памяти с хранящимися там данными. Переменная может иметь тип, характеризующий множество значений, которые она может принимать. В программировании, переменные, как правило, обозначаются одним или несколькими словами или символами, такими, как «time», «x», «foo» и тому подобное.

Следует отметить, что это значение в некотором смысле схоже с математическим. Математики в XVII веке придумали переменную именно для того, чтобы «забронировать» в формуле место, на которое в нужный момент можно подставить конкретное значение. Бумага в этом процессе является памятью, а обозначения (чаще, буквы) резервируют и именуют области этой памяти. Ощущение неоднозначности возникает из-за того, что формула в математике играет двоякую роль: если это алгоритм вычисления, смысл совпадает с программистским определением; если же формула визуализирует отношения своих элементов, мы абстрагируемся от роли переменной, как ячейки памяти, такое понимание теряет смысл.

  1. В. А. Ильин, В. А. Садовничий, Бл. Х. Сендов. Глава 3. Теория пределов // Математический анализ / Под ред. А. Н. Тихонова. — 3-е изд., перераб. и доп. — М.: Проспект, 2006. — Т. 1. — С. 105—121. — 672 с. — ISBN 5-482-00445-7