Нейросеть

Содержание

Чем искусственный интеллект и отличается от нейронных сетей?

Alexander Ovcharenko 1611 2 года назад Программист

Почти всегда, когда в популярной прессе встречается термин «ИИ» — этот лишь красивый термин для нейронных сетей, чтобы сделать статью понятнее для читателя (ну а ещё — заманить побольше читателей). Уже сложилась, видимо, такая культура среди обозревателей: видишь нейронную сеть — пиши, что это «ИИ».

По терминологии: ИИ — это программа, которая умеет учиться (самостоятельно в процессе своей работы получать знания и опыт) и эффективно использовать свой опыт в дальнейшем для более качественного выполнения некой задачи (задачи, для которой эта программа создана). Если это специализированная программа (например, для игры в шахматы) — её называют «слабым» ИИ, потому что её способность понимать (получать опыт) специально создана и адаптирована под шахматы. Уже создано много слабых ИИ. Например, Alpha Zero, основанная на нейронных сетях, и обучившаяся игре в шахматы самостоятельно с нуля, сейчас является претендентом на звание сильнейшего в мире шахматного игрока (она играет примерно на одном уровне и, возможно, даже превосходит лучшие шахматные программы, которые созданы классическим программированием на основе теории шахмат). Термин «сильный ИИ» (или же «ИИ общего назначения») зарезервирован для гипотетической программы, которая способна самостоятельно учиться разным задачам (то есть, в ней нет специального программирования под конкретную задачу). На данный момент ни одной такой программы нет и скорое появление (в ближайшие 5 лет) не предвидится. Разработки в этом направлении ведутся (в том числе, авторами упомянутой здесь Alpha Zero).

Заметьте, что в термине ИИ нет никакого упоминания нейронных сетей. Потому что этот термин описывает не какую-либо технологию, не инструмент, не средство. Термин ИИ описывает конечный результат (способность учиться и использовать изученное). То есть, ИИ может быть создан на основе нейронных сетей, а может быть, и без них (хотя, скорее всего, это, действительно, будут нейронные сети).

С другой стороны, термин «нейронная сеть» описывает как раз технологию (идею, подход) программирования. Идея в том, чтобы вместо того, чтобы программировать все действия программы команда за командой (как в классическом программировании), создать некоторую базовую структуру с самыми общими представлениями о том, с чем ей придётся работать. При этом эта структура основана на огромном количестве чисел-параметров (миллионы (миллиарды? триллионы?)), но они намеренно оставлены незаполненными (изначально там какие-то примерные средние значения и немного мусора). Во многом эта структура по принципу работы похожа на работу человеческого мозга (поэтому и называется «нейронная сеть»). Затем путём огромного количества (от сотен тысяч до миллионов), так сказать, «практических заданий» (программа выполняет работу и затем успешность работы этой программы оценивается), шаг за шагом определяется, какие конкретные значения всех этих параметров будут приводить к наилучшему результату. Этот процесс поиска наилучших параметров и есть обучение, получение опыта. Поскольку сама идея нейронной сети состоит в том, что она должна много обучаться, любая работающая нейронная сеть в какой-то мере является ИИ (если она хоть какую-то полезную задачу решает).

Итак, термин «ИИ» описывает идею. ИИ может быть основан на принципах нейронных сетей, а может на каких-то других. Термин «нейронная сеть» описывает технологию (которая, как пока что показывает практика, является наиболее многообещающей для будущего сильного ИИ).

Нейронные сети. Искусственный интеллект

Научно – практической конференции

«Шаг в будущее»

Нейронные сети. Искусственный интеллект

Андрейчук Андрей учащийся 9 класса А

МБОУ «СОШ №47» г.Читы

Научный руководитель: Михайлов Е.И. учитель информатики и физики МБОУ «СОШ №47» г.Читы (высшая категория)

г.Чита – 2018

Нейронные сети. Искусственный интеллект

Андрейчук Андрей

Россия, Забайкальский край, город Чита

МБОУ «СОШ №47»

9 класс «А»

Краткая аннотация

Во время эксплуатации мощных компьютерных систем, каждый задавался вопрос: «А может ли машина мыслить и вести себя также как человек? «.
Таким образом, развитие ИИ началось с намерения создать подобный интеллект в машинах, схожий с человеческим.

Нейроинформатика и нейрокибернетика являются одним из направлений искусственного интеллекта. Поскольку «искусственный интеллект − это направление информатики, целью которого является разработка программно-аппаратных средств, позволяющих решать традиционно являющиеся интеллектуальными задачи», и в число этих задач входит создание интеллектуальных роботов, оптимальное управление, обучение и самообучение, распознавание образов, прогнозирование и т.д. − то это как раз те задачи, для решения которых нейронные сети и применяются наиболее широко.

Если при создании классических экспертных систем человек-эксперт (возможно, с помощью инженера по знаниям) должен сначала формализовать свои знания (представить их на естественном языке в виде набора правил или шаблонов), и получение непротиворечивого и полного формулирования знаний является долгим и трудоемким процессом − то нейросетевые экспертные системы самообучаются по базе экспериментальных данных (фактов). Это делает возможным создание нейроэкспертных систем при отсутствии человека-эксперта, например, для новой зарождающейся области деятельности, где требуется диагностика.

Андрейчук Андрей

Россия, Забайкальский край, город Чита

МБОУ «СОШ №47»

9 класс «А»

Аннотация

Нейросетевые алгоритмы успешно применяются для решения сложных практических задач, традиционно считающихся интеллектуальными: распознавание лиц (и другие задачи распознавания изображений и объектов на изображении), управление беспилотными летательными аппаратами, медицинская диагностика заболеваний и т.д.

Конечно, технологии и методы искусственного интеллекта делают основной упор на ситуации, обладающие одной или несколькими следующими особенностями:

  • алгоритм решения неизвестен или не может быть использован из-за ограниченности ресурсов компьютера;

  • задача не может быть определена в числовой форме;

  • цели задачи не могут быть выражены в терминах точно определенной целевой функции-критерия.

Однако, поскольку «знания − это формализованная информация, которую используют в процессе логического вывода», то можно сказать, что нейросеть берёт факты (фактические знания о мире, представленные в виде обучающей выборки) и в процессе обучения формирует правила − знания, описывающие найденный нейросетью способ решения. Эти правила принятия решения можно затем извлечь из нейронной сети и записать в одном из традиционных для классических экспертных систем формализмов представления знаний (например, в виде набора продукционных правил логического вывода). Но можно просто пользоваться построенным нейросетевым представлением алгоритма принятия решения, если содержательная интерпретация его менее важна по сравнению с возможностью получения способа решения задачи.

Возможность быстрого обучения и дообучения нейросетевых экспертных систем позволяет им отражать особенности быстро меняющегося внешнего мира и оперировать актуальным знанием, тогда как традиционный путь формализации знаний людей-экспертов более длителен и трудозатратен.

Актуальность исследований связанных с нейронными сетями обуславливается тем, что обработка поступающей в человеческий мозг информации отличается от методов цифровой обработки. Человеческий мозг работает как очень сложное, нелинейное, параллельное вычислительное устройство.

Научно доказано – мозг состоит из огромного числа нервных клеток (нейронов). Количество структурных связей в человеческом мозге, создаваемых только одним нейроном, варьируется от десятка до ста тысяч. Таким образом, создается нейронная сеть, по которой проходят нервные сигналы. Эти сигналы выступают причиной изменений состояния нейронов и их соединений. От количества нервных сигналов зависит активность мозга.

Цель данной работы – это создание и дальнейшее совершенствование прототипа нейронных сетей (допиши с учетом твоей программы)

Поставленная цель включает в себя несколько задач:

  1. Анализ имеющейся информации по данному направлению;

  2. Разработка и отладка приложения дописать название, указать язык программирования;

  3. Применение и демонстрация законом и принципов нейронный сетей и искусственного интеллекта;

  4. Проведение исследований и экспериментов.

Объект исследования: искусственный интеллект;

Предмет исследования: нейронная сеть – один из способов реализации искусственного интеллекта;

Методы исследования:

— исследования направлений связанных с искусственным интеллектом, машинным обучением и нейросетями;

— обобщение полученных данных;

— экспериментальные исследования модели нейронных сетей;

— апробация программного обеспечения для модели нейронных сетей дописать название, указать язык программирования (обучение, распознание).

Гипотеза: в основе рабочей гипотезы лежит предположение о том, что существует, нейронные сети и искусственный интеллект могут значительно упростить жизнь человека, живущего в информационном обществе, встать на службу современным информационным технологиям.

Научная новизна: разработана новая модель искусственных нейронных сетей, позволяющая описывать алгоритмы обработки сигналов в терминах элементов и связей между ними. Создание модели дописать название программы

Практическая значимость

Созданный в процессе работы комплекс программ может использоваться для описания, компиляции, визуализации, отладки и запуска нейронных сетей в рамках новой модели. При этом разработанные алгоритмы и архитектура позволяют реализовать и применять и другие модели нейронных сетей.

Работа состоит из трех глав. В первой главе рассмотрены понятия нейронных сетей, искусственного интеллекта. Представлена история нейронных сетей и искусственного интеллекта, приведены классификации.

Во второй главе, представлена технология разработки программного комплекса, рассмотрены основные приемы работы.

В третьей главе представлено описание результатов моделирования, приведен анализ экспериментов.

Андрейчук Андрей

Россия, Забайкальский край, город Чита

МБОУ «СОШ №47»

9 класс «А»

План исследования

  1. Определение проблемы и вопроса подлежащего исследованию;

  2. Методы исследования: определение источников информации и анализ полученных данных по выбранному вопросу исследования, выявление основных особенностей изучаемого вопроса, определение ключевых понятий исследования.

  3. Ход исследования:

    • Постановка темы исследования, выявление актуальности исследования;

    • Определение круга вопросов, связанных с темой исследования;

    • Выявление источников информации, необходимых для проведения исследования;

    • Изучение источников информации, выявление базовых понятий, терминов;

    • Разбор и анализ полученной информации, выбор основных категорий исследования;

    • Разработка и составления плана исследовательской работы;

    • Обработка и анализ информации;

    • Написание исследовательской работы;

    • Оформление плана и порядка выступления.

    • Защита в рамках школьной конференции.

Андрейчук Андрей

Россия, Забайкальский край, город Чита

МБОУ «СОШ №47»

9 класс «А»

Андрейчук Андрей

Россия, Забайкальский край, город Чита

МБОУ «СОШ №47»

9 класс «А»

Введение

Интеллект — это весьма общая умственная способность, которая включает возможность делать заключения, планировать, решать проблемы, абстрактно мыслить, понимать сложные идеи, быстро обучаться и учиться на основании опыта.

Интеллект человека является органической структурой, при всех ее плюсах имеются и минусы.

Нейронная сеть – один из способов реализации искусственного интеллекта (ИИ).
В разработке ИИ существует обширная область — машинное обучение. Она изучает методы построения алгоритмов, способных самостоятельно обучаться. Это необходимо, если не существует четкого решения какой-либо задачи. В этом случае проще не искать правильное решение, а создать механизм, который сам придумает метод для его поиска.

Нейросеть моделирует работу человеческой нервной системы, особенностью которой является способность к самообучению с учетом предыдущего опыта. Таким образом, с каждым разом система совершает все меньше ошибок.

Как и наша нервная система, нейросеть состоит из отдельных вычислительных элементов – нейронов, расположенных на нескольких слоях. Данные, поступающие на вход нейросети, проходят последовательную обработку на каждом слое сети. При этом каждый нейрон имеет определенные параметры, которые могут изменяться в зависимости от полученных результатов – в этом и заключается обучение сети.

Основная часть

История нейронных сетей

Термин «нейронная сеть» появился в середине XX века. Первые работы, в которых были получены основные результаты в данном направлении, были проделаны Мак-Каллоком и Питтсом. В 1943 году ими была разработана компьютерная модель нейронной сети на основе математических алгоритмов и теории деятельности головного мозга. Они выдвинули предположение, что нейроны можно упрощённо рассматривать как устройства, оперирующие двоичными числами, и назвали эту модель «пороговой логикой». Подобно своему биологическому прототипу нейроны Мак-Каллока–Питтса были способны обучаться путём подстройки параметров, описывающих синаптическую проводимость. Исследователи предложили конструкцию сети из электронных нейронов и показали, что подобная сеть может выполнять практически любые вообразимые числовые или логические операции. Мак-Каллок и Питтс предположили, что такая сеть в состоянии также обучаться, распознавать образы, обобщать, т. е. обладает всеми чертами интеллекта.

Данная модель заложила основы двух различных подходов исследований нейронных сетей. Один подход был ориентирован собственно на изучение биологических процессов в головном мозге, другой – на применение нейронных сетей как метода искусственного интеллекта для решения различных прикладных задач.

  • в 1949 году канадский физиолог и психолог Хебб высказал идеи о характере соединения нейронов мозга и их взаимодействии;

  • в 1954 году в Массачусетском технологическом институте с использованием компьютеров Фарли и Кларк разработали имитацию сети Хебба. Также исследования нейронных сетей с помощью компьютерного моделирования были проведены Рочестером, Холландом, Хебитом и Дудой в 1956 году;

  • в 1957 году Розенблаттом были разработаны математическая и компьютерная модели восприятия информации мозгом на основе двухслойной обучающейся нейронной сети. При обучении данная сеть использовала арифметические действия сложения и вычитания;

  • Интерес к исследованию нейронных сетей угас после публикации работы по машинному обучению Минского и Пейперта в 1969 году. Ими были обнаружены основные вычислительные проблемы, возникающие при компьютерной реализации искусственных нейронных сетей;

  • одним из важных шагов, стимулировавших дальнейшие исследования, стала разработка в 1975 году Вербосом метода обратного распространения ошибки, который позволил эффективно решать задачу обучения многослойных сетей и решить проблему со «сложением по модулю 2»;

  • в 1975 году Фукусимой был разработан когнитрон, который стал одной из первых многослойных нейронных сетей. Фактическая структура сети и методы, используемые в когнитроне для настройки относительных весов связей, варьировались от одной стратегии к другой. Каждая из стратегий имела свои преимущества и недостатки;

  • алгоритм параллельной распределённой обработки данных в середине 1980 годов стал популярен под названием коннективизма. В 1986 году в работе Руммельхарта и Мак-Клелланда коннективизм был использован для компьютерного моделирования нейронных процессов.

Искусственные нейронные сети

Изобретатель первого нейрокомпьютера, доктор Роберт Хехт-Нильсен, дал следующее понятие нейронной сети: «Нейронная сеть — это вычислительная система, состоящая из ряда простых, сильно взаимосвязанных элементов обработки, которые обрабатывают информацию путем их динамического реагирования на внешние воздействия».

Базовая структура искусственных нейронных сетей (ИНС)

Идея ИНС базируется на убеждении, что можно имитировать работу мозга человека, создав нужные связи с помощью кремния и проводов таких как у живых нейронов и дендритов.

Человеческий мозг состоит из 100 миллиардов нервных клеток, называемых нейронами. Они связаны с другими тысячами клеток Аксонами. Раздражители из внешней среды или сигналы от органов чувств принимаются дендритами. Эти входные сигналы создают электрические импульсы, которые быстро перемещаются через нейросеть. Затем нейрон может посылать сообщения на другие нейроны, которые могут отправить это сообщение дальше или могут вообще ее не отправлять.

Есть два типа искусственных нейронных сетевых топологий — с прямой связью и обратной связью.

Как устроена нейронная сеть

Нейросеть моделирует работу человеческой нервной системы, особенностью которой является способность к самообучению с учетом предыдущего опыта. Таким образом, с каждым разом система совершает все меньше ошибок.

Как и наша нервная система, нейросеть состоит из отдельных вычислительных элементов – нейронов, расположенных на нескольких слоях. Данные, поступающие на вход нейросети, проходят последовательную обработку на каждом слое сети. При этом каждый нейрон имеет определенные параметры, которые могут изменяться в зависимости от полученных результатов – в этом и заключается обучение сети.

Предположим, что задача нейросети – отличать кошек от собак. Для настройки нейронной сети подается большой массив подписанных изображений кошек и собак. Нейросеть анализирует признаки (в том числе линии, формы, их размер и цвет) на этих картинках и строит такую распознавательную модель, которая минимизирует процент ошибок относительно эталонных результатов.

На рисунке ниже представлен процесс работы нейросети, задача которой — распознать цифру почтового индекса, написанную от руки.

Рисунок 1 Устройство нейронной сети

Нейронные сети с прямой связью

Поток информации является однонаправленным. Блок передает информацию на другие единицы, от которых он не получает никакой информации. Нет петли обратной связи. Они имеют фиксированные входы и выходы.

Рисунок 2 Нейронные сети с прямой связью

Рисунок 3 Нейронные сети с обратной связью

Машинное обучение в искусственных нейронных сетях

ИНС способны к обучению, и они должны быть обучены. Существует несколько стратегий обучения

Обучение — включает в себя учителя, который подает в сеть обучающую выборку на которые учитель знает ответы. Сеть сравнивает свои результаты с ответами учителя и корректирует свои весовые коэффициенты.

Обучение без учителя — это необходимо, когда нет обучающей выборки с известными ответами. Например в задачах кластеризации, т.е. деления множества элементов на группы по каким-то критериям.

Обучение с подкреплением — эта стратегия, построенная на наблюдении. Сеть принимает решение наблюдая за своим окружением. Если наблюдение является отрицательным, сеть корректирует свои веса, чтобы иметь возможность делать разные необходимые решения.

Байесовские сети (БС)

Эти графические структуры для представления вероятностных отношений между набором случайных переменных.

В этих сетях каждый узел представляет собой случайную переменную с конкретными предложениями. Например, в медицинской диагностике, узел Рак представляет собой предложение, что пациент имеет рак.

Ребра, соединяющие узлы представляют собой вероятностные зависимости между этими случайными величинами. Если из двух узлов, один влияет на другой узел, то они должны быть связаны напрямую. Сила связи между переменными количественно определяется вероятностью, которая связан с каждым узлом.

Есть только ограничение на дугах в БН, вы не можете вернуться обратно к узле просто следуя по направлению дуги. Отсюда БНС называют ациклическим графом.

Структура БН идеально подходит для объединения знаний и наблюдаемых данных. БН могут быть использованы, чтобы узнать причинно-следственные связи и понимать различные проблемы и предсказывать будущее, даже в случае отсутствия данных.

Популярность нейронных сетей

До 2010 года попросту не существовало базы данных, достаточно большой для того, чтобы качественно обучить нейросети решать определенные задачи, в основном связанные с распознаванием и классификацией изображений. Поэтому нейросети довольно часто ошибались: путали кошку с собакой, или, что еще хуже, снимок здорового органа со снимком органа, пораженного опухолью.

Но в 2010 году появилась база ImageNet, содержащая 15 миллионов изображений в 22 тысячах категорий. ImageNet многократно превышала объем существовавших баз данных изображений и была доступна для любого исследователя. С такими объемами данных нейросети можно было учить принимать практически безошибочные решения.

До этого на пути развития нейросетей стояла другая, не менее существенная, проблема: традиционный метод обучения был неэффективен. Несмотря на то что важную роль играет число слоев в нейронной сети, важен также и метод обучения сети. Использовавшийся ранее метод обратного шифрования мог эффективно обучать только последние слои сети. Процесс обучения оказывался слишком длительным для практического применения, а скрытые слои глубинных нейросетей не функционировали должным образом.

Результатов в решении этой проблемы в 2006 году добились три независимых группы ученых. Во-первых, Джеффри Хинтон реализовал предобучение сети при помощи машины Больцмана, обучая каждый слой отдельно. Во-вторых, Ян ЛеКан предложил использование сверточной нейронной сетидля решения проблем распознавания изображений. Наконец, Иошуа Бенджио разработал каскадный автокодировщик, позволивший задействовать все слои в глубокой нейронной сети.

Успешное применение нейронных сетей

Таблица 1 Применение нейронных сетей

обученный искусственный интеллект определял риск кардиологических заболеваний эффективнее реальных врачей.

Финансы

Японская страховая компания Fukoku Mutual Life Insurance заключила контракт с IBM. Софгласно нему, 34 сотрудников японской компании заменит система IBM Watson Explorer AI.

Бизнес

искусственный интеллект существенно улучшил механизмы рекомендаций в онлайн-магазинах и сервисах. Алгоритм Yandex Data Factory способен предсказывать влияние промоакций. Нейросети, анализирующие естественный язык, могут использоваться для создания чат-ботов.

Транспорт

беспилотные автомобили – концепт, над которым работает большинство крупных концернов, ожидают, что умные автомобили появятся на дорогах уже к 2025 году.

Промышленность

разработка синтетических молекул, выплавка стали, переработка стекла.

Сельское хозяйство

определение оптимального времени ухода и обработки сельскохозяйственных культур.

Искусство

обработки фото и видео, нейронные сети компании уже записали два альбома, Японский алгоритм написал книгу “День, когда Компьютер написал роман”, программа обыграла сильнейшего игрока в го в мире

Безопасность

поиск акул в прибрежных водах и предупреждение людей на пляжах

Практическая часть

Вставить скриншоты и подробное описание процесса работы программы!

Заключение

Нейронные сети, технология середины прошлого века, сейчас меняет работу целых отраслей. Реакция общества неоднозначна: одних возможности нейросетей приводят в восторг, а других – заставляют усомниться в их пользе как специалистов.

Однако не везде, куда приходит машинное обучение, оно вытесняет людей. Если нейросеть ставит диагнозы лучше живого врача, это не значит, что в будущем нас будут лечить исключительно роботы. Вероятнее, врач будет работать вместе с нейросетью. Аналогично, суперкомпьютер IBM Deep Blue выиграл в шахматы у Гарри Каспарова еще в 1997 году, однако люди из шахмат никуда не делись, а именитые гроссмейстеры до сих пор попадают на обложки глянцевых журналов.

Искусственный интеллект-это будущее всего человечества, развитие нейронных сетей, является огромным шагом в будущее, где не будет требоваться физический труд человека.

Уже сейчас мы видим насколько быстро и безошибочно компьютер выполняет действия, которые не по силу десяткам ученных. Инвестируя и развивая технологии ИИ, человечество развивается одновременно в тысячи сфер, так как искусственный интеллект можно применять практически во всех сферах жизнедеятельности.

Список используемой литературы

  1. Интернет-инциклопедия, https://ru.wikipedia.org/wiki/Искусственная_нейронная_сеть (Дата обращения 10.03.2018г.)

  2. Искусственный интеллект и проблемы обоняния, http://www.robogeek.ru/iskusstvennyi-intellekt (Дата обращения 10.03.2018г.)

  3. Теория и практики искусственного интеллекта, http://theoryandpractice.ru/posts/7872-human_brain_project (Дата обращения 10.03.2018г.)

  4. Искусственный интеллект, http://rb.ru/longread/russian-ai-startups/ (Дата обращения 10.03.2018г.)

  5. Интернет-блог КРИПТО, https://blog.dti.team/nejroseti/ (Дата обращения 06.03.2018г.)

  6. Сайт обзорIT, http://obzoryit.ru/nejronnye-seti-iskusstvennyj-intellekt/ (Дата обращения 06.03.2018г.)

Нейронные цепочки и формирование привычек

На протяжении многих веков человеческий организм, его жизнеобеспечивающие функции, психика и система восприятия являлись одним из самых трудоёмких объектов для всестороннего и глубокого изучения. С появлением новых направлений и исследований в медицине, генетике, нейробиологии и психологии стало возможным провести множество параллелей о взаимном влиянии наших психоментальных процессов и биологических функций организма.

В данной статье мы обзорно рассмотрим с позиции нейробиологии и ииссиидиологии взаимосвязи некоторых отделов мозга и проходящих в них нейрональных цепочек с психологическими состояниями и привычками человека.

1. Немного о нейронах

Нейронная сеть (нервная система человека) – сложная сеть структур, которая обеспечивает взаимосвязанное поведение разных систем в организме. Нейрон – это специальная клетка, состоящая из ядра, тела и многочисленных отростков – дендритов (длинные отростки называют аксонами). Зоны контакта между нейронами называются синапсами. Средний человеческий мозг располагает ресурсом в 100 млрд. нейронов. Каждая клетка, в свою очередь, может дать примерно 200 тыс. синаптических ответвлений. В нейронах происходят сложнейшие процессы обработки информации. С их помощью формируются ответные реакции организма на внешние и внутренние раздражения .

Одна из ключевых задач нейрона — передача электрохимического импульса по нейронной сети по доступным (резонационным) связям с другими нейронами. При этом каждая из связей характеризуется некоторой величиной, которая называется синаптической силой. Она определяет, что будет происходить с электрохимическим импульсом при его передаче другому нейрону: усилится он, ослабеет или останется неизменным.

Биологическая нейронная сеть имеет высокую степень связности: на один нейрон приходится порою несколько тысяч связей с остальными нейронами. Однако это приблизительное значение, которое в каждом из конкретных случаев разное. Передача импульсов от нейрона к нейрону порождает некоторое возбуждение всей сети нейронов. Несколько упрощая, можно сказать, что каждая нейронная сеть представляет собой мысль, навык, воспоминание, то есть некий блок информации.

Любая наша мысль меняет работу мозга, прокладывая новые пути для электрических импульсов. При этом электрический сигнал должен преодолеть щель синапса для образования новых связей между нервными клетками. Эту дорогу ему труднее всего пройти первый раз, но по мере повторения, когда сигнал преодолевает синапс снова и снова, связи становятся «шире и прочнее»; растёт число синапсов и связей между нейронами. Образуются новые нейронные микросети, куда «встраиваются» новые знания, убеждения, привычки, модели поведения, навыки человека.

Здесь мне бы хотелось подчеркнуть, что конкретика этих убеждений будет зависеть от того, в каком отделе головного мозга будут чаще всего задействованы нейронные цепочки.

2. Отделы мозга: неокортекс и лимбическая система

На сегодняшний день считается, что отличительной особенностью человеческого мозга от мозга животных является заметно увеличенные области лобных долей, которые представляют собой один из отделов неокортекса (от лат. neo – новая, cortex- кора). Этот отдел полушарий головного мозга в процессе эволюции был сформирован довольно поздно. И если у хищников он едва намечен, то у современного человека лобные доли занимают около 25% общей площади больших полушарий мозга.

Другими словами, эта — человеческая — часть головного мозга отвечает за то, насколько хорошо мы способны организовывать свои мысли и действия в соответствии с теми целями, которые стоят перед нами. Также полноценное функционирование лобных долей дает каждому из нас возможность сопоставлять свои действия с теми намерениями, для осуществления которых мы их совершаем, выявлять несоответствия и исправлять ошибки. Это центр концентрации внимания, осознанности, а также контроля инстинктов и эмоций. За поведение, которое повторяется многократно и выполняется на «автопилоте», отвечает левая часть неокортекса. Правая часть «включается», когда человек сталкивается с незнакомой информацией, собирается выполнить новую задачу или делает несвойственный ему выбор.

В тоже время каждый из нас может себя узнать и в таких проявлениях как резкие перепады настроения, окрашенные пессимистичным или негативным взглядом на жизнь, снижение мотивации, устремления, самооценки, усиление чувства вины или беспомощности и многие другие подобные состояния.

Такие модели поведения регулируются архикортексом, или лимбической системой. У «людей» и у животных эта подкорковая мозговая структура участвует в формировании как отрицательных (страх, оборонительное и агрессивное поведение), так и примитивных положительных эмоций. Причём её размер положительно коррелирует с агрессивным поведением: у менее развитых «личностей» она всегда крупнее .

Почему же нам, людям, бывает так сложно контролировать степень активности нейронных сетей лимбической системы?

Одной из основных причин является ещё достаточно устойчивая сосредоточенность личности на собственных интересах. По этой причине задействуются отделы мозга, связанные с эмоциями и получением различных видов удовольствий: тактильных, вкусовых, обонятельных, эстетических и других; в корне многих мотиваций лежит получение выгоды и желание комфорта, побуждающее личность идти путём наименьшего сопротивления к данным состояниям.

Лимбическая система обуславливает автоматические (часто неосознаваемые) реакции на уровне инстинктов. Инстинкты – это совокупность сложных наследственно обусловленных шаблонов поведения, которые мы машинально используем в своей повседневной жизни . Однако многие базовые животные инстинкты: стадный, половой, инстинкт самосохранения в процессе эволюционирования были адаптированы под человеческий образ жизни и приобрели несколько иной вид. Например, инстинкт самосохранения может проявляться у людей как склонность к повышенной осторожности, мнительности, нетерпимость к боли, тревожность в отношении всего неизвестного, эгоцентричность. Всё это может стать одной из причин формирования у человека «тяжелого характера», которому присущи чрезмерный эгоизм, подозрительность, истеричность, трусость и прочие качества. Другой пример, это инстинкт продолжения рода, проявляющийся первично в воспроизводстве потомства и межполовых отношениях, однако он также изрядно трансформировался и проявляется у людей как излишнее стремление к нарядам, самоукрашению, паническая зацикленность на своей внешности и фигуре, кокетство, флирт, нарциссизм, стремление обнажать себя. Это всего лишь несколько примеров, демонстрирующих то, что в основе большинства наших повседневных интересов главенствуют нейронные цепочки архаичных животных программ выживания и зацикленности на себе.

Некоторые люди могут даже не предполагать того, что данные проявления не только являются нечеловеческим наследием, но и не позволяют нам полноценно развиваться, преодолевать свои недостатки и несовершенства с лёгкостью. Таким образом, ежедневно подкрепляя различные типы инстинктов, усиливаются и «уплотняются» подобные нейрональные цепи, являясь причиной формирования импульсивных и в большей степени негативных шаблонов поведения.

Здесь важно отметить, что наиболее действенный способ для «торможения» этих нейронных цепочек – научиться анализировать и различать собственные черты и модели поведения, стараясь подключать отделы неокортекса, посредством осознанности и наблюдением за собой. А для этого необходим контроль над своими текущими навыками и эгоистичными состояниями для усиления других нейрональных сетей, отвечающих за «новые» гармоничные шаблоны мышления .

3. Взаимосвязанность нейронных сетей

В добавление ко всему вышесказанному, хотелось бы отметить ещё несколько особенностей нейронных сетей. Одно из фундаментальных правил нейронауки гласит: нейроны, используемые вместе, соединяются. Стоит сделать что-либо один раз, и разрозненная группа нейронов образует сеть, но если вы не повторите это действие достаточное количество раз, то не «протопчете тропинку» в мозге, соответствующую подобному качеству выборов и мышления. Когда мы совершаем определённые действия снова и снова, то связь между нервными клетками укрепляется и «включить» эту нейросеть повторно становится гораздо проще. В результате даже мимолетные мысли и ощущения могут надолго оставить соответствующий след в нашем мозге.

Здесь стоит подумать о том, какие нейрональные цепочки мы закладываем своим мышлением и действиями изо дня в день. Какие тенденции мышления нам больше свойственны: гармония, созидание или деструкция, разрушение? Какую «атмосферу» мы создаём вокруг себя и что полезного и радостного несём другим людям?

Все образующиеся в нашем мозге нейросети не обособлены, а тесно и сложно взаимоувязаны между собой, и именно эти взаимосвязи образуют сложные идеи, глубокие переживания, воспоминания из жизни, образы давно испытанных эмоций. Человеческий мозг взаимодействует с миллионами бит информации каждую секунду, но сознательно мы способны воспринимать только небольшую часть из них.

Например, нейросеть, хранящая понятие «яблока» в информационном простнатсве нашего сознания, — это не один простой комплекс нейронов. Это довольно крупная сеть, соединенная с другими сетями, хранящими такие понятия, как «красный», «фрукт», «круглый», «вкусный», «сочный», «сладкий» и т. д. Эта нейросеть также соединена со многими другими сетями, поэтому, когда мы видим яблоко, зрительная область коры головного мозга (которая тоже подключена сюда) обращается к этой сети, чтобы дать нам образ яблока именно для этой конкретной ситуации. В другой ситуации в зависимости от настроения, текущего психического состояния человека, он к понятию яблока подключит абсолютно другие нейронные сети и получит соответственно другие переживания, например, «кислое», «твёрдое», «несочное» и т.д.

У каждого человека имеется собственная коллекция огромного многообразия переживаний и навыков, представленная в нейросетях его мозга. Доктор медицинских наук Д. Диспенза поясняет: «В какой семье вы росли, сколько у вас было братьев и сестер, где вы учились, какую религию исповедовали ваши близкие, к какой культуре они принадлежали, где вы жили, любили вас и поощряли в детстве или били и обижали — все это и многое другое сказалось на формировании нейросетей вашего мозга» .

Согласно концепции автора «Ииссиидиологии», на образование новых нейронных взаимосвязей оказывают влияние не только вышеназванные факторы. Одним из постулатов ииссиидиологии является теория о многовариантном, многомировом существовании всех форм, в том числе и людей. Одновременно с нами существует бесконечное количество Вселенных, миров и наших личностных интерпретаций в них. Из этого вытекает следующий принцип: благодаря постоянным взаимовлияниям друг на друга разных вариантов «нас самих», мы образуем тесную генно-волновую резонационную связь, благодаря чему происходит обмен и поступление информации в систему восприятия для дальнейшего декодирования её через ДНК с помощью нейронов и гормонов .

Таким образом происходит формирование «нейронной ткани» нашего мироощущения и в ответ на стимулы из окружающей среды включаются те или иные зоны нейросетей, вызывая определенные биохимические процессы в мозге и гормональной системе. Эти процессы, в свою очередь, влекут за собой соответствующие эмоциональные реакции, окрашивают восприятие, обусловливают отношение к людям и событиям нашей жизни.

Подобное информационное воздействие на нас всегда осуществляется по резонационному (резонанс – усиление частоты колебаний по совпадению некоторых признаков) принципу. В какой-то степени здесь уместно выражение «притяжение подобного подобным». Иными словами, задействовав новые модели поведения, человек начинает постепенно резонировать с соответствующим вариантом убеждений «другого себя», укрепляя тем самым данные нейронные цепочки.

Как уже говорилось выше, если часто реагировать одним образом, активизируется определенная нейронная сеть и соответствующее поведение превращается в устойчивую привычку. Чем чаще используется сеть, тем прочнее она становится и тем проще получить к ней доступ.

Также возможен и обратный процесс: устойчивые связи между нейронами, не используемыми вместе, ослабевают. Всякий раз, когда мы прекращаем или предотвращаем действие, ментальный процесс, оформленный в нейросеть, соединенные между собой нервные клетки и группы клеток ослабляют свою связь. При этом тончайшие дендриты, отходящие от каждого нейрона и связывающие его с другими нейронами, освобождаются для связи с другими. Этот механизм обусловлен нейропластичностью (нейрогенезом) — в зависимости от стимуляции нейронов, одни связи становятся прочнее и эффективнее, а другие ослабевают, высвобождая потенциал для формирования новых.

Авторы книги «Мозг: краткое руководство» Д. Льюис и А. Вебстер утверждают, что человеку необходима ежедневная «встряска»», иначе в мозге не будут формироваться новые нейронные связи, необходимые для сбалансированного ментально-чувственного развития .

Когда мозг привыкает не думать, не решать сложных задач и не преодолевать сложности, не трансформировать внутренние и внешние конфликты, то происходит торможение развития и постепенная деградация личности, потому что электрические импульсы задействуют уже знакомые им пути, не прокладывая новых.

В цикле книг по ииссиидиологии для повышения нейрональных взаимосвязей в сторону высокочувственного и высокоинтеллектуального потенциала личности предлагается модель интеллектуально-альтруистичного развития и образа жизни. Это позволяет нам в большей степени задействовать Человеческие отделы мозга и гармонизировать активность эгоистично-импульсивных выборов и программ. Ииссиидиология и центры МИЦИАР, создаваемые для её практического применения, направлены на радикальное позитивное человеческое переформатирование и трансформацию нейронных сетей, соответствующих модели нашего восприятия себя и мира вокруг нас .

4. Заключение

С точки зрения физиологии, привычки есть не что иное, как образование в мозговых структурах устойчивых нервных взаимосвязей, отличающихся повышенной готовностью к функционированию по сравнению с другими цепочками нейронного реагирования. Чем больше мы повторяем какие-либо действия, мысли, слова, тем более активными и автоматическими становятся соответствующие нейронные пути.

Разные отделы полушарий мозга играют в этом процессе свою необходимую роль. Когда их деятельность синхронизирована между собой, то передача информации между нейронами становится оптимальной.

Для человека огромное значение имеет баланс между чувственно-эмоциональной сферой (контролируется лимбической системой) и высокоинтеллектуальной активностью (отвечают отделы неокортекса). Личность развивается и действует наиболее эффективно, когда дисбаланс между «передовыми» областями мозга и более старыми (примитивными) отсутствует либо его степень незначительна.

Мозг — это более сложная структура, чем просто большой набор разных популяций нейронов, аксонов и глиальных клеток. Это один из главных механизмов адаптации поступающей к нам из внешней среды любого рода информации. Он выступает в роли её «декодировщика» и «интерпретатора» для нашей системы восприятия. Исполнительные функции этого процесса выполняются благодаря гормональной системе, которая и отражает на физиологическом уровне результат внутренней психоментальной активности человека в каждый момент времени.

С другой стороны, наше самосознание является «регулятором» любых биологических процессов и нервной системы, способствуя побуждению к деятельности тех или иных участков головного мозга. Эта закономерность всегда предоставляет нам возможность создавать необходимый образ себя, а также наиболее гармоничные привычки в своей повседневной жизни, которые станут основой для внутренней гармонии.

Известно, что мозг состоит из эмбриональной ткани, поэтому он всегда открыт для развития, обучения и перемен. Учёные убеждены, что наш мозг способен простой мыслью, воображением, визуализацией, изменять структуру и функцию серого вещества, и это может происходить даже без специальных, внешних воздействий, а под влиянием лишь тех мыслей, которыми он наполнен. Всё вышесказанное подводит к пониманию того, что каждому, кто задумывается о качестве своего мышления и привычек, требуется фундаментальное изменение накопленных убеждений – преодоление и смену инстинктивной генетической программы и прежнего воспитания на истинно человеческие представления, основанные на высокоинтеллектуальных и высокочувственных представлениях любого аспекта жизни.

Первоисточники:

Научный журнал «Нейросайнс»

Орис О. В. «Ииссиидиология. Комментарии к Основам» Том 11 — Издательство «Москва», 2010, п.11.12161

Статьи «Инстинктивные или «животные» уровни в структуре сознания человека», Дррааоллдлисс.

Статьи «Эмоции с точки зрения нейропсихологии и ииссиидиологии», Смаайгллаамсс.

Джо Диспенза «Сила подсознания, или Как изменить жизнь за 4 недели». Издательство: Эксмо. Москва, 2013 г.

Вся правда и ложь о Нейросистеме 7: обзор и отзывы на Лохотрон от якобы Елены Малышевой

Всем привет! В нашем мире очень много полных людей, мечтающих быстро сбросить лишний вес. Отчаившись они начинают заказывать разные «волшебные» средства для похудения. Поэтому сегодня я хотел бы вам рассказать, какова вся правда о Нейросистеме 7, в чем состоит ее ложь, и действительно ли ее рекомендует Елена Малышева. Также мы рассмотрим все отзывы об этом чудо средстве, и выясним, насколько они правдивые. Так что не спешите заказывать эту дрянь, а лучше дочитайте мою статью до конца.

Елена Малышева рекламирует нейросистему 7?

Многие спросят, с каких пор я пишу про способы похудения? А ни с каких. Я пишу не про сброс лишнего веса, а про очередной лохотрон, который распространяется через интернет. Поэтому всё в рамках мои так сказать полномочий.

Большинство людей натыкаются на этот препарат для сброса лишнего веса через сайт якобы Елены Малышевой. Наверняка вы знаете эту слегка пришибленную особу и ее передачу «Жить здорово», на которой иногда твориться такое, что просто хочется поскорее выключить и забыть как страшный сон.

На данном ресурсе описан один из сюжетов передачи, где сама Малышева общается с диетологом, рекламируя чудосредство для похудения. Но почему-то нет видеофрагмента этой передачи. Но тут всё просто. Такого выпуска никогда не было, а Малышева хоть и с прибабахом, но никогда не рекламировала эту дрянь.

Знаменитого теледоктора впихнули сюда, чтобы доверчивые граждане ориентировались на медийное лицо, мол она же профессионал и плохого не посоветует. Потом еще и телеведущую будут обвинять, когда у них ничего не выйдет.

Ну а ниже мы видим лестные отзывы о препарате Нейросистема 7. Вот только все они лживые до мозга и костей, да и сбросивышие вес женщины ненастоящие. Точнее женщины-то настоящие, и конечно же они действительно похудели, правда не благодаря этому препарату.

И узнать это достаточно легко. Достаточно загнать любую из фотографий в поиск по картинке на Яндексе или Гугле, чтобы увидеть, что все эти дамы появляются на многих других лохотронских сайтах, причем преимущественно на зарубежных.

Обзор сайта

Теперь, давайте подробнее рассмотрим сам сайт-продажник этой хрени. Нам сразу рассказывают о чудесных свойствах препарата, что за 7 дней он избавит нас от семи килограмм. Цена одной порции составляет всего 149 рублей. Запомните эти цифры. Нам они еще пригодятся.

Ниже в принципе ничего интересного нет, кроме пугающей информации о последствиях ожирения. Стандартный прием, чтобы напугать человека и побудить взять его эту ненужную пустышку.

Но самое классное начинается, когда нас просят ввести свои данные. Представьте себе, я ввел рост 180 см и вес 83 кг, а система мне выдала, что у меня ожирение 3-й степени. Для тех, кто не в курсе, ожирение третьей степени появилось бы только тогда, когда при росте 180 см я веси бы 130 кг. То есть по сути ребятки этим калькулятором вводят народ в заблуждение, давая ложные данные. Судя по их счетчику, мой нормальный вес вообще должен составлять всего 50 кг.

Компоненты

Далее, нам пытаются показать, какие мощные компоненты входят в состав Нейросистемы 7. Судя по составу, жир должен будет начать расщепляться прямо на ваших глазах. Но по сути, даже если все эти компоненты присутствовали бы в препарате, то вы бы все равно не похудели после приема чудодейственных ампул. Проще похудеть, если съешь просроченную шаурму или селедку с молоком.

Да и как выясняется по отзывам, ничем подобным там и не пахнет. Обманутые пользователи описывают этот препарат как подкрашенную жидкость с кислинкой. И судя по всему в этих ампулах действительно разведена какая-нибудь лимонная или аскорбиновая кислота. Вреда здоровью не причинят, но и эффекта похудения не будет.

Эксперт

Естественно, ни один медицинский лохотрон не может обойтись без заявления какого-нибудь эксперта. В данном случае перед нами появляется «знаменитый» диетолог и автор нескольких книг Виталий Симонов. Правда есть одно НО. В интернете данный персонаж нигде не упоминается, кроме как на сайтах-продажниках и заказных статьях. В общем, данный персонаж просто подделка, и такого диетолога просто не существует.

Отзывы о препарате Нейросистема 7

Ну и куда же мы без отзывов пациентов? Естественно, на любом лохотронском сайте есть целая куча положительных отзывов от благодарных клиентов, которые прикладывают фотографии самих себя до и после приема.

Вот только, как это уже и было понятно, это фейк. Данные фотки используются практически на всех лохотронских сайтах, которые занимаются продажей препаратов для сброса лишнего веса. Причем, встречаются не только российские, но и зарубежные ресурсы.

Но есть и луч света в темном царстве. Одна из благодарных клиентов прислала видеоотзыв о чудо-средстве «Нейросистема 7». Казалось бы, это видеодоказательство, а значит ей можно верить, в отличие от текстовых комментариев. Но не тут-то было. Во-первых, видеоотзывы часто бывают заказными. А во-вторых мы видим как похудевшая тетенька рассказывает нам о чудесном похудении.

Вот только, если это был эксперимент, то почему она не записала его начало, когда она еще была толствой? Вместо этого мы наблюдаем лишь фотографию, которую запросто можно подделать. Достаточно лишь присобачить лицо тетеньки на чужое толстое тело с помощью фотошопа.

Помимо этого в интернете есть целая куча проплаченных отзывов о том, как люди худели благодаря этой пустышке. Только на сей раз никто свои фотографии не прилагал. Помимо этого, многие блогеры и авторы контентных сайтов с удовольствием пишут статьи про этот шлак. А всё дело в том, что у Нейросистемы есть партнерская программа, которая работает через CPA сети.

Слава Богу, что хотя бы среди этого шлака можно найти реальные отзывы о Нейросистеме 7. И вот здесь уже видно, насколько «хорош данный препарат». Пользователи все как один твердят, что ничего не сбросили, заплатив 5000 рублей за препарат. И я хочу сказать, что им еще повезло, что они просто ничего не сбросили. А могли бы вообще в больничной койке оказаться.

Реквизиты

Ну и как добропорядочная компания, эта контора оставила свои реквизиты. Я решил посмотреть, действительно ли по указанным реквизитам находится компания «Росфарм» или нас опять дурят. И да, я был прав. После того, как я проверил ИНН на сайте nalog.ru, я увидел, что под данным номером зарегистрирована компания «Грандис», которая была ликвидирована еще в 2013 году.

А если зайти в Яндекс карты и вбить указанный адрес, то мы увидим, что никакого Росфарма там также нет. В общем, с реквизитами нас также накололи.

Разговор с менеджером

Также, мне стало интересно, как меня будут пытаться развести менеджеры этой конторы. Поэтому я решил заказать этот продукт.

В течение минуты мне позвонил менеджер и начал меня расспрашивать о моем образе жизни, сколько я вешу и насколько хочу похудеть. Я не сказал ему правду, а наврал, что хочу похудеть на 11 кг, после чего он мне объявил, что мне больше всего подойдет 7-недельный курс за 5300 рублей. Я отказался это делать ввиду отсутствия денег, но он продолжал «давить» меня другими спецпредложениями, периодически рассказывая о проблемах со здоровьем и отсутствием женского внимания из-за лишнего жира.

До последнего этот негодяй не хотел меня отпускать, но когда понял, что я не поддамся на его уговоры, то попрощался со мной и бросил трубку. Полную версию моего разговора, а также полное разоблачение мошеннического проекта Нейросистема 7 вы можете посмотреть в моем видеоролике с моего ютуб-канала. Уверен, что вам понравится.

Итог

Как вы поняли, вся правда заключается в том, что Нейросистема семь это всего лишь пустышка, которая не обладает какими-либо свойствами. Поэтому, если вы вдруг вздумаете покупать это препарат для похудения или ему подобные, то не вздумайте! Большинство людей ведутся на сладкие речи менеджеров и низкую цену, но в итоге тратят по 5000 на этот шлак, который не поможет сжечь ни грамма жира. Зато вы теперь знаете, что этим шарлатанам верить не стоит. Лучше просто следите за ежедневным рационом и старайтесь не выходить суточную норму потребления калорий, и совмещайте все это хотя ьы с ежедневной ходьбой.

Ну а на этом я свою статью заканчиваю. Надеюсь, что она вам понравилась. Обязательно подписывайтесь на мой паблик ВК и канал Ютуб, где я рассказываю про мошенников и интернет-лохотроны. Жду вас снова на своем блоге. Пока-пока!

С уважением, Дмитрий Костин

Что такое нейронная сеть

За последнюю пару лет искусственный интеллект незаметно отряхнулся от тегов «фантастика» и «геймдизайн» и прочно прописался в ежедневных новостных лентах. Сущности под таинственным названием «нейросети» опознают людей по фотографиям, водят автомобили, играют в покер и совершают научные открытия. При этом из новостей не всегда понятно, что же такое эти загадочные нейросети: сложные программы, особые компьютеры или стойки со стройными рядами серверов?

Конечно, уже из названия можно догадаться, что в нейросетях разработчики попытались скопировать устройство человеческого мозга: как известно, он состоит из множества простых клеток-нейронов, которые обмениваются друг с другом электрическими сигналами. Но чем тогда нейросети отличаются от обычного компьютера, который тоже собран из примитивных электрических деталей? И почему до современного подхода не додумались ещё полвека назад?

Давайте попробуем разобраться, что же кроется за словом «нейросети», откуда они взялись — и правда ли, что компьютеры прямо на наших глазах постепенно обретают разум.

Идея нейросети заключается в том, чтобы собрать сложную структуру из очень простых элементов. Вряд ли можно считать разумным один-единственный участок мозга — а вот люди обычно на удивление неплохо проходят тест на IQ. Тем не менее до сих пор идею создания разума «из ничего» обычно высмеивали: шутке про тысячу обезьян с печатными машинками уже сотня лет, а при желании критику нейросетей можно найти даже у Цицерона, который ехидно предлагал до посинения подбрасывать в воздух жетоны с буквами, чтобы рано или поздно получился осмысленный текст. Однако в XXI веке оказалось, что классики ехидничали зря: именно армия обезьян с жетонами может при должном упорстве захватить мир.


Красота начинается, когда нейронов много

На самом деле нейросеть можно собрать даже из спичечных коробков: это просто набор нехитрых правил, по которым обрабатывается информация. «Искусственным нейроном», или перцептроном, называется не какой-то особый прибор, а всего лишь несколько арифметических действий.

Работает перцептрон проще некуда: он получает несколько исходных чисел, умножает каждое на «ценность» этого числа (о ней чуть ниже), складывает и в зависимости от результата выдаёт 1 или –1. Например, мы фотографируем чистое поле и показываем нашему нейрону какую-нибудь точку на этой картинке — то есть посылаем ему в качестве двух сигналов случайные координаты. А затем спрашиваем: «Дорогой нейрон, здесь небо или земля?» — «Минус один, — отвечает болванчик, безмятежно разглядывая кучевое облако. — Ясно же, что земля».

«Тыкать пальцем в небо» — это и есть основное занятие перцептрона. Никакой точности от него ждать не приходится: с тем же успехом можно подбросить монетку. Магия начинается на следующей стадии, которая называется машинным обучением. Мы ведь знаем правильный ответ — а значит, можем записать его в свою программу. Вот и получается, что за каждую неверную догадку перцептрон в буквальном смысле получает штраф, а за верную — премию: «ценность» входящих сигналов вырастает или уменьшается. После этого программа прогоняется уже по новой формуле. Рано или поздно нейрон неизбежно «поймёт», что земля на фотографии снизу, а небо сверху, — то есть попросту начнёт игнорировать сигнал от того канала, по которому ему передают x-координаты. Если такому умудрённому опытом роботу подсунуть другую фотографию, то линию горизонта он, может, и не найдёт, но верх с низом уже точно не перепутает.

Чтобы нарисовать прямую линию, нейрон исчеркает весь лист

В реальной работе формулы немного сложнее, но принцип остаётся тем же. Перцептрон умеет выполнять только одну задачу: брать числа и раскладывать по двум стопкам. Самое интересное начинается тогда, когда таких элементов несколько, ведь входящие числа могут быть сигналами от других «кирпичиков»! Скажем, один нейрон будет пытаться отличить синие пиксели от зелёных, второй продолжит возиться с координатами, а третий попробует рассудить, у кого из этих двоих результаты ближе к истине. Если же натравить на синие пиксели сразу несколько нейронов и суммировать их результаты, то получится уже целый слой, в котором «лучшие ученики» будут получать дополнительные премии. Таким образом достаточно развесистая сеть может перелопатить целую гору данных и учесть при этом все свои ошибки.

Первые нейросети

Перцептроны устроены не намного сложнее, чем любые другие элементы компьютера, которые обмениваются единицами и нулями. Неудивительно, что первый прибор, устроенный по принципу нейросети — Mark I Perceptron, — появился уже в 1958 году, всего через десятилетие после первых компьютеров. Как было заведено в ту эпоху, нейроны у этого громоздкого устройства состояли не из строчек кода, а из радиоламп и резисторов. Учёный Фрэнк Розенблатт смог соорудить только два слоя нейросети, а сигналы на «Марк-1» подавались с импровизированного экрана размером в целых 400 точек. Устройство довольно быстро научилось распознавать простые геометрические формы — а значит, рано или поздно подобный компьютер можно было обучить, например, чтению букв.


Розенблатт и его перцептрон

Розенблатт был пламенным энтузиастом своего дела: он прекрасно разбирался в нейрофизиологии и вёл в Корнеллском университете популярнейший курс лекций, на котором подробно объяснял всем желающим, как с помощью техники воспроизводить принципы работы мозга. Учёный надеялся, что уже через несколько лет перцептроны превратятся в полноценных разумных роботов: они смогут ходить, разговаривать, создавать себе подобных и даже колонизировать другие планеты. Энтузиазм Розенблатта вполне можно понять: тогда учёные ещё верили, что для создания ИИ достаточно воспроизвести на компьютере полный набор операций математической логики. Тьюринг уже предложил свой знаменитый тест, Айзек Азимов призывал задуматься о необходимости законов роботехники, а освоение Вселенной казалось делом недалёкого будущего.

Впрочем, были среди пионеров кибернетики и неисправимые скептики, самым грозным из которых оказался бывший однокурсник Розенблатта, Марвин Минский. Этот учёный обладал не менее громкой репутацией: тот же Азимов отзывался о нём с неизменным уважением, а Стэнли Кубрик приглашал в качестве консультанта на съёмки «Космической одиссеи 2001 года». Даже по работе Кубрика видно, что на самом деле Минский ничего не имел против нейросетей: HAL 9000 состоит именно из отдельных логических узлов, которые работают в связке друг с другом. Минский и сам увлекался машинным обучением ещё в 1950-х. Просто Марвин непримиримо относился к научным ошибкам и беспочвенным надеждам: недаром именно в его честь Дуглас Адамс назвал своего андроида-пессимиста.

В отличие от Розенблатта, Минский дожил до триумфа ИИ

Сомнения скептиков того времени Минский подытожил в книге «Перцептрон» (1969), которая надолго отбила у научного сообщества интерес к нейросетям. Минский математически доказал, что у «Марка-1» есть два серьёзных изъяна. Во-первых, сеть всего с двумя слоями почти ничего не умела — а ведь это и так уже был огромный шкаф, пожирающий уйму электричества. Во-вторых, для многослойных сетей алгоритмы Розенблатта не годились: по его формуле часть сведений об ошибках сети могла потеряться, так и не дойдя до нужного слоя.

Минский не собирался сильно критиковать коллегу: он просто честно отметил сильные и слабые стороны его проекта, а сам продолжил заниматься своими разработками. Увы, в 1971 году Розенблатт погиб — исправлять ошибки перцептрона оказалось некому. «Обычные» компьютеры в 1970-х развивались семимильными шагами, поэтому после книги Минского исследователи попросту махнули рукой на искусственные нейроны и занялись более перспективными направлениями.

Эпоха застоя

Развитие нейросетей остановилось на десять с лишним лет — сейчас эти годы называют «зимой искусственного интеллекта». К началу эпохи киберпанка математики наконец-то придумали более подходящие формулы для расчёта ошибок, но научное сообщество поначалу не обратило внимания на эти исследования. Только в 1986 году, когда уже третья подряд группа учёных независимо от других решила обнаруженную Минским проблему обучения многослойных сетей, работа над искусственным интеллектом наконец-то закипела с новой силой.

Хотя правила работы остались прежними, вывеска сменилась: теперь речь шла уже не о «перцептронах», а о «когнитивных вычислениях». Экспериментальных приборов никто уже не строил: теперь все нужные формулы проще было записать в виде несложного кода на обычном компьютере, а потом зациклить программу. Буквально за пару лет нейроны научились собирать в сложные структуры. Например, некоторые слои искали на изображении конкретные геометрические фигуры, а другие суммировали полученные данные. Именно так удалось научить компьютеры читать человеческий почерк. Вскоре стали появляться даже самообучающиеся сети, которые не получали «правильные ответы» от людей, а находили их сами. Нейросети сразу начали использовать и на практике: программу, которая распознавала цифры на чеках, с удовольствием взяли на вооружение американские банки.

1993 год: уже морально устарела

К середине 1990-х исследователи сошлись на том, что самое полезное свойство нейросетей — их способность самостоятельно придумывать верные решения. Метод проб и ошибок позволяет программе самой выработать для себя правила поведения. Именно тогда стали входить в моду соревнования самодельных роботов, которых программировали и обучали конструкторы-энтузиасты. А в 1997 году суперкомпьютер Deep Blue потряс любителей шахмат, обыграв чемпиона мира Гарри Каспарова.

Строго говоря, Deep Blue не учился на своих ошибках, а попросту перебирал миллионы комбинаций

Увы, примерно в те же годы нейросети упёрлись в потолок возможностей. Другие области программирования не стояли на месте — вскоре оказалось, что с теми же задачами куда проще справляются обычные продуманные и оптимизированные алгоритмы. Автоматическое распознавание текста сильно упростило жизнь работникам архивов и интернет-пиратам, роботы продолжали умнеть, но разговоры об искусственном интеллекте потихоньку заглохли. Для действительно сложных задач нейросетям по-прежнему не хватало вычислительной мощности.

Вторая «оттепель» ИИ случилась, только когда изменилась сама философия программирования.

Нейросети наших дней

В последнее десятилетие программисты — да и простые пользователи — часто жалуются, что никто больше не обращает внимания на оптимизацию. Раньше код сокращали как могли — лишь бы программа работала быстрее и занимала меньше памяти. Теперь даже простейший интернет-сайт норовит подгрести под себя всю память и обвешаться «библиотеками» для красивой анимации.

Конечно, для обычных программ это серьёзная проблема, — но как раз такого изобилия и не хватало нейросетям! Учёным давно известно, что если не экономить ресурсы, самые сложные задачи начинают решаться словно бы сами собой. Ведь именно так действуют все законы природы, от квантовой физики до эволюции: если повторять раз за разом бесчисленные случайные события, отбирая самые стабильные варианты, то из хаоса родится стройная и упорядоченная система. Теперь в руках человечества наконец-то оказался инструмент, который позволяет не ждать изменений миллиарды лет, а обучать сложные системы буквально на ходу.

В последние годы никакой революции в программировании не случилось — просто компьютеры накопили столько вычислительной мощности, что теперь любой ноутбук может взять сотню нейронов и прогнать каждый из них через миллион циклов обучения. Оказалось, что тысяче обезьян с пишущими машинками просто нужен очень терпеливый надсмотрщик, который будет выдавать им бананы за правильно напечатанные буквы, — тогда зверушки не только скопируют «Войну и мир», но и напишут пару новых романов не хуже.

Так и произошло третье пришествие перцептронов — на этот раз уже под знакомыми нам названиями «нейросети» и «глубинное обучение». Неудивительно, что новостями об успехах ИИ чаще всего делятся такие крупные корпорации как Google и IBM. Их главный ресурс — огромные дата-центры, где на мощных серверах можно тренировать многослойные нейросети. Эпоха машинного обучения по-настоящему началась именно сейчас, потому что в интернете и соцсетях наконец-то накопились те самые big data, то есть гигантские массивы информации, которые и скармливают нейросетям для обучения.

В итоге современные сети занимаются теми трудоёмкими задачами, на которые людям попросту не хватило бы жизни. Например, для поиска новых лекарств учёным до сих пор приходилось долго высчитывать, какие химические соединения стоит протестировать. А сейчас существует нейросеть, которая попросту перебирает все возможные комбинации веществ и предлагает наиболее перспективные направления исследований. Компьютер IBM Watson успешно помогает врачам в диагностике: обучившись на историях болезней, он легко находит в данных новых пациентов неочевидные закономерности.

Люди классифицируют информацию с помощью таблиц, но нейросетям незачем ограничивать себя двумя измерениями — поэтому массивы данных выглядят примерно так

В сфере развлечений компьютеры продвинулись не хуже, чем в науке. За счёт машинного обучения им наконец поддались игры, алгоритмы выигрыша для которых придумать ещё сложнее, чем для шахмат. Недавно нейросеть AlphaGo разгромила одного из лучших в мире игроков в го, а программа Libratus победила в профессиональном турнире по покеру. Более того, ИИ уже постепенно пробирается и в кино: например, создатели сериала «Карточный домик» использовали big data при кастинге, чтобы подобрать максимально популярный актёрский состав.

Как и полвека назад, самым перспективным направлением остаётся распознание образов. Рукописный текст или «» давно уже не проблема — теперь сети успешно различают людей по фотографиям, учатся определять выражения лиц, сами рисуют котиков и сюрреалистические картины. Сейчас основную практическую пользу из этих развлечений извлекают разработчики беспилотных автомобилей — ведь чтобы оценить ситуацию на дороге, машине нужно очень быстро и точно распознать окружающие предметы. Не отстают и спецслужбы с маркетологами: по обычной записи видеонаблюдения нейронная сеть давно уже может отыскать человека в соцсетях. Поэтому особо недоверчивые заводят себе специальные камуфляжные очки, которые могут обмануть программу.

«Ты всего лишь машина. Только имитация жизни. Разве робот сочинит симфонию? Разве робот превратит кусок холста в шедевр искусства?» («Я, робот»)

Наконец, начинает сбываться и предсказание Розенблатта о самокопирующихся роботах: недавно нейросеть DeepCoder обучили программированию. На самом деле программа пока что просто заимствует куски чужого кода, да и писать умеет только самые примитивные функции. Но разве не с простейшей формулы началась история самих сетей?

Игры с ботами

Развлекаться с недоученными нейросетями очень весело: они порой выдают такие ошибки, что в страшном сне не приснится. А если ИИ начинает учиться, появляется азарт: «Неужто сумеет?» Поэтому сейчас набирают популярность интернет-игры с нейросетями.

Одним из первых прославился интернет-джинн Акинатор, который за несколько наводящих вопросов угадывал любого персонажа. Строго говоря, это не совсем нейросеть, а несложный алгоритм, но со временем он становился всё догадливее. Джинн пополнял базу данных за счёт самих пользователей — и в результате его обучили даже интернет-мемам.

Другое развлечение с «угадайкой» предлагает ИИ от Google: нужно накалякать за двадцать секунд рисунок к заданному слову, а нейросеть потом пробует угадать, что это было. Программа очень смешно промахивается, но порой для верного ответа хватает всего пары линий — а ведь именно так узнаём объекты и мы сами.

Ну и, конечно, в интернете не обойтись без котиков. Программисты взяли вполне серьёзную нейросеть, которая умеет строить проекты фасадов или угадывать цвет на чёрно-белых фотографиях, и обучили её на кошках — чтобы она пыталась превратить любой контур в полноценную кошачью фотографию. Поскольку проделать это ИИ старается даже с квадратом, результат порой достоин пера Лавкрафта!

Революция откладывается

При таком обилии удивительных новостей может показаться, что искусственный интеллект вот-вот осознает себя и сумеет решить любую задачу. На самом деле не так всё радужно — или, если встать на сторону человечества, не так мрачно. Несмотря на успехи нейросетей, у них накопилось столько проблем, что впереди нас вполне может ждать очередная «зима».

Главная слабость нейросетей в том, что каждая из них заточена под определённую задачу. Если натренировать сеть на фотографиях с котиками, а потом предложить ей задачку «отличи небо от земли», программа не справится, будь в ней хоть миллиард нейронов. Чтобы появились по-настоящему «умные» компьютеры, надо придумать новый алгоритм, объединяющий уже не нейроны, а целые сети, каждая из которых занимается конкретной задачей. Но даже тогда до человеческого мозга компьютерам будет далеко.

Сейчас самой крупной сетью располагает компания Digital Reasoning (хотя новые рекорды появляются чуть ли не каждый месяц) — в их творении 160 миллиардов элементов. Для сравнения: в одном кубическом миллиметре мышиного мозга около миллиарда связей. Причём биологам пока удалось описать от силы участок в пару сотен микрометров, где нашлось около десятка тысяч связей. Что уж говорить о людях!

Один слой умеет узнавать людей, другой — столы, третий — ножи…

Такими 3D-моделями модно иллюстрировать новости о нейросетях, но это всего лишь крошечный участок мышиного мозга

Кроме того, исследователи советуют осторожнее относиться к громким заявлениям Google и IBM. Никаких принципиальных прорывов в «когнитивных вычислениях» с 1980-х годов не произошло: компьютеры всё так же механически обсчитывают входящие данные и выдают результат. Нейросеть способна найти закономерность, которую не заметит человек, — но эта закономерность может оказаться случайной. Машина может подсчитать, сколько раз в твиттере упоминается «Оскар», — но не сможет определить, радуются пользователи результатам или ехидничают над выбором киноакадемии.

Теоретики искусственного интеллекта настаивают, что одну из главных проблем — понимание человеческого языка — невозможно решить простым перебором ключевых слов. А именно такой подход до сих пор используют даже самые продвинутые нейросети.

Сказки про Скайнет

Хотя нам самим сложно удержаться от иронии на тему бунта роботов, серьёзных учёных не стоит даже и спрашивать о сценариях из «Матрицы» или «Терминатора»: это всё равно что поинтересоваться у астронома, видел ли он НЛО. Исследователь искусственного интеллекта Элиезер Юдковски, известный по роману «Гарри Поттер и методы рационального мышления», написал ряд статей, где объяснил, почему мы так волнуемся из-за восстания машин — и чего стоит опасаться на самом деле.

Прежде всего, «Скайнет» приводят в пример так, словно мы уже пережили эту историю и боимся повторения. А всё потому, что наш мозг не умеет отличать выдумки с киноэкранов от жизненного опыта. На самом-то деле роботы никогда не бунтовали против своей программы, и попаданцы не прилетали из будущего. С чего мы вообще взяли, что это реальный риск?

Бояться надо не врагов, а чересчур усердных друзей. У любой нейросети есть мотивация: если ИИ должен гнуть скрепки, то, чем больше он их сделает, тем больше получит «награды». Если дать хорошо оптимизированному ИИ слишком много ресурсов, он не задумываясь переплавит на скрепки всё окрестное железо, потом людей, Землю и всю Вселенную. Звучит безумно — но только на человеческий вкус! Так что главная задача будущих создателей ИИ — написать такой жёсткий этический кодекс, чтобы даже существо с безграничным воображением не смогло найти в нём «дырок».

* * *

Итак, до настоящего искусственного интеллекта пока ещё далеко. С одной стороны над этой проблемой по-прежнему бьются нейробиологи, которые ещё до конца не понимают, как же устроено наше сознание. С другой наступают программисты, которые попросту берут задачу штурмом, бросая на обучение нейросетей всё новые и новые вычислительные ресурсы. Но мы уже живём в прекрасную эпоху, когда машины берут на себя всё больше рутинных задач и умнеют на глазах. А заодно служат людям отличным примером, потому что всегда учатся на своих ошибках.

Сделай сам

Нейронную сеть можно сделать с помощью спичечных коробков — тогда у вас в арсенале появится фокус, которым можно развлекать гостей на вечеринках. Редакция МирФ уже попробовала — и смиренно признаёт превосходство искусственного интеллекта. Давайте научим неразумную материю играть в игру «11 палочек». Правила просты: на столе лежит 11 спичек, и в каждый ход можно взять либо одну, либо две. Побеждает тот, кто взял последнюю. Как же играть в это против «компьютера»? Очень просто.

  1. Берём 10 коробков или стаканчиков. На каждом пишем номер от 2 до 11.
  2. Кладём в каждый коробок два камешка — чёрный и белый. Можно использовать любые предметы — лишь бы они отличались друг от друга. Всё — у нас есть сеть из десяти нейронов!

Теперь начинается игра.

  1. Нейросеть всегда ходит первой. Для начала посмотрите, сколько осталось спичек, и возьмите коробок с таким номером. На первом ходу это будет коробок №11.
  2. Возьмите из нужного коробка любой камешек. Можно закрыть глаза или кинуть монетку, главное — действовать наугад.
  3. Если камень белый — нейросеть решает взять две спички. Если чёрный — одну. Положите камешек рядом с коробком, чтобы не забыть, какой именно «нейрон» принимал решение.
  4. После этого ходит человек — и так до тех пор, пока спички не закончатся.

Ну а теперь начинается самое интересное: обучение. Если сеть выиграла партию, то её надо наградить: кинуть в те «нейроны», которые участвовали в этой партии, по одному дополнительному камешку того же цвета, который выпал во время игры. Если же сеть проиграла — возьмите последний использованный коробок и выньте оттуда неудачно сыгравший камень. Может оказаться, что коробок уже пустой, — тогда «последним» считается предыдущий походивший нейрон. Во время следующей партии, попав на пустой коробок, нейросеть автоматически сдастся.

Вот и всё! Сыграйте так несколько партий. Сперва вы не заметите ничего подозрительного, но после каждого выигрыша сеть будет делать всё более и более удачные ходы — и где-то через десяток партий вы поймёте, что создали монстра, которого не в силах обыграть.

>А можно сыграть в эту игру прямо здесь

Что такое нейросети и как использовать их в интернет-торговле

Нейросети, или искусственный интеллект, активно применяется в маркетинге. Крупные корпорации уже используют их для своих нужд. Давайте узнаем, как нейросети могут помочь владельцу интернет-магазина уже сейчас.

Что такое нейронные сети и как они работают?

Нейросеть — это совокупность нейронов, которые связываются друг с другом в цепочки. Каждое из звеньев — отдельный элемент, который отвечает за распознавание какого-либо критерия: например, цвета, размера, объема и так далее. А вместе нейросети видят предмет в целом. Эта система может работать по заданному алгоритму и обучаться самостоятельно: запоминать информацию, действовать по шаблону и даже выдавать самостоятельные реакции. Получается, нейросеть — это не что иное, как искусственный интеллект, созданный людьми.

Страшно? Наверное, вспомнили фильмы про то, как искусственный интеллект завоевывает мир? Не надо бояться, антиутопиям свойственно нагнетать краски. На самом деле, по крайней мере сейчас, нейросети прекрасно управляются человеком и служат на благо общества. Приведем несколько примеров:

  1. Алгоритмы поисковых систем — самая настоящая нейросеть, которая распознает контент на сайтах и формирует поисковую выдачу согласно определенным критериям. Каковы они, точно не знает никто. Ну или знает, то глубокомысленно молчит.
  2. Мобильные приложения, которые обрабатывают ваши фото: Prisma, Vinci и другие. Тоже действуют на основе нейросетей.
  3. Чат-боты, установленные на сайтах и в приложениях, которые общаются с клиентами. Нет никакой гарантии, что, спрашивая в интернет-магазине о конкретном товаре, вы разговариваете с человеком. Вполне возможно, с вами разговаривает искусственный интеллект.

Чем хороши нейросети?

Во-первых, как уже было сказано, нейросети — не тупой бездушный механизм, а система, способная к обучению. Алиса, голосовой помощник Яндекса, когда была маленькая, училась и запоминала различные комбинации. Помните, как раньше действовали боты в чатах: по шаблону, реагируя на конкретные слова и выдавая стандартный ответ. Автор этих строк, помнится, любил троллить ботов, задавая им глупые вопросы и потешаясь над ответами. Так вот, Алису не затроллишь: девочка выросла и вполне способна самостоятельно ответить на любые вопросы, действуя на основе предыдущего опыта. Она учится и развивается, прямо как человек.

Во-вторых, будущее этих механизмов имеет огромные перспективы. Если сейчас, за прошедшие несколько лет, нейросети из предмета разработки программистов перешли в народ и стали использоваться повсеместно, трудно представить, что же ждет нас в будущем. В любом случае надо использовать открывающиеся возможности по полной программе.

Итак, давайте посмотрим, какую выгоду могут принести нейросети в сфере электронной коммерции уже сейчас.

1. Нейросети формируют поисковую выдачу. Поисковые алгоритмы «Палех» и «Королев» работают именно с их помощью. Происходит это так: нейросети обрабатывают терабайты контента, индексируют заголовки, подзаголовки, тексты, фото, видео и массу других критериев и смотрят, насколько они будут полезными для пользователей. Если раньше достаточно было напихать в текст ключей и потирая руки ждать, пока он поднимется в топ, сейчас все сложнее. Переспамленный текст никто читать не будет, а если и будет — он все равно мало полезен для пользователей.

Что делать? Наполняя интернет-магазин контентом, не гонитесь за SEO-данными. Банально, да, но тексты теперь пишутся не для поисковиков, а для людей. Ключи — пожалуйста, используйте, но вставляйте их в текст органично и не допускайте переспама.

2. Нейросети распознают изображения. Этот механизм работал и ранее: зайдите в Яндекс.Картинки и поищите любое изображение. Система отфильтрует самые подходящие запросу картинки и выдаст похожие изображения.

Что делать? Насыщать контент на сайте интернет-магазина фото и видео по теме. Мало того что пользователи это любят — это еще любят поисковые алгоритмы. Облегчите им поиск, подсуньте изображения и не забудьте про подписи. Там, кстати, можно даже ключи написать — это тоже будет проиндексировано.

3. Нейросети персонализируют контент. Зайдите в YouTube, посмотрите видео, справа вы увидите список видео, которые нейросеть рекомендует именно вам. Эти рекомендации действительно будут в тему: нейросети изучают и содержание видеороликов, и реакцию пользователей на них. То есть если большинству видео не понравилось — шансы на то, что его покажут в рекомендациях, падают. В Яндекс.Дзене та же система: пользователям показываются статьи согласно их предпочтениям. То есть схожие с тем, что они сами ранее читали или искали. Системы контекстной рекламы AdSense и ЯндексДирект тоже действуют по аналогичному принципу: собирают статистику данных об активности пользователей и привязывают ее к аккаунту или айпи-адресу.

Как это использовать в электронной коммерции?

Подключить сервисы персональных товарных рекомендаций. Например, retailrocket.ru, rees46.com и другие. С помощью этих сервисов проводятся массовые персонализированные и триггерные рассылки клиентам по разным сценариям на основе их предпочтений и активности на сайте. Причем можно создать разные группы клиентов — опять же на основе их персональных предпочтений, и создавать разные рассылки. Словом, возможностей масса.

Допустим, приходит к вам человек и ищет бежевое пальто — система персонализации подскажет ему другие, схожие варианты. Так вы узнаете предпочтения ваших посетителей, что в дальнейшем поможет грамотно организовать рекламную кампанию — тот же контекст или таргет. Кроме того, увеличится трафик и время, проведенное пользователем на сайте. Не забываем, что поисковые алгоритмы учитывают и эти критерии. Значит, есть шанс подняться в топе на более высокие позиции.

Если на сайте появятся новые товары, нейросеть будет учитывать и их — на основе прошлого опыта. Вы же помните, что это обучаемая система?

4. Нейросети умеют распознавать речь. Если на вашем сайте еще не установлен голосовой поиск — немедленно сделайте это. Все больше пользователей заходят на сайт со смартфона, и вместо того чтобы набирать в строке поисковика определенный запрос, наговаривают его — так проще и удобнее. Обратите внимание: как и в случае с письменными запросами в поисковую систему, уже не обязательно подстраивать тексты под кривые ключи: например, купить шторы красные в Воронеже. Вполне достаточно написать простыми языком: не волнуйтесь, эти запросы прекрасно распознаются.

Что делать? Адаптируйте сайт интернет-магазина под это нововведение: во-первых, создайте удобную мобильную версию, которая не виснет и хорошо читается, а во-вторых, включитесь в систему голосового поиска. Следите за тем, чтобы в статьях, карточках товара, описании и надписями под фото фигурировала обычная человеческая речь. Представьте, что вы сами ищете те самые шторы. Что вы спросите? Вот эти выражения и вставляйте в контент.

5. Нейросети умеют общаться с клиентами. Мы уже писали про возможности чат-ботов в статье о главных трендах электронной коммерции в 2018 году. Напомним еще раз. Чат-боты и системы автоматизации имитируют диалог с пользователем, причем делают это так хитро, что на первый взгляд и не разберешь, кто с тобой общается: живой человек или нейросеть.

Чат-боты умеют обрабатывать ответы пользователей и отвечать на них, развивать диалог, задавать клиенту наводящие вопросы и всячески мотивировать к совершению покупки. Чат-боты могут обучаться: если внести коррективы в их ответы, в следующий раз нейросеть учтет это и исправит предыдущие ошибки.

Пример: Google Inbox использует нейросети, чтобы общаться с пользователями. Система анализирует переписку и предлагает уже не один вариант ответа, а несколько.

Что делать? Устанавливать системы автоматизации на сайт интернет-магазина. Привлекать виртуальных помощников к общению. Этим вы оптимизируете время ваших реальных сотрудников и избавите их от ежедневной рутины общения с клиентами.

6. Нейросети умеют делать рассылки. Сколько времени уходит на создание и рассылку писем? Очень много, если делать это вручную, поручив какому-нибудь сотруднику. Время летит вперед, и теперь этим успешно занимаются нейросети. Они умеют делать рассылки и уведомлять пользователей о распродажах, акциях и скидках, поступлении нового товара или другом заманчивом предложении.

Что делать? Искать предложения и устанавливать систему на сайт. Экономить время для создания и рассылки писем. Ах да: нейросети еще и писать тексты умеют. Но все же, наверное, лучше пока делать это самостоятельно или поручить маркетологу. А в будущем станет видно.

7. Нейросети умеют искать лиды. В соцсетях ежедневно появляются миллионы запросов на самые разные темы. Люди спрашивают, где купить той или иной товар, как записаться на услугу и даже кто поможет вылечить волнистого попугайчика. Эти запросы часто остаются без ответа, в то время как их можно использовать в собственных целях. Остается лишь находить их в соцсетях — вот они, готовые лиды, бери и ешь с маслом. Есть такой сервис Shikari, который занимается поиском лидов в соцсетях. Он работает на основе нейросетей, которые ищут запросы по ключевым словам и фильтруют их. Сотрудники сначала обучали нейросети, затем они начинают действовать самостоятельно. В результаты клиенты сервиса получают качественные лиды, с которыми можно начинать работу.

Что делать? Искать подобные сервисы и пользоваться их услугами. Это не реклама, а один из примеров того, как нейросети служат на благо малого бизнеса.

8. Нейросети могут автоматизировать техподдержку. Мы уже писали, что гарантом отличного сервиса служит круглосуточная работа техподдержки, которая помогает клиенту в любое время дня и ночи и дает действительно полезные советы. Помогут те же чат-боты, которых можно научить отвечать на распространенные ответы пользователей.

Что делать — ну вы поняли. Устанавливая чат-боты, вы разгрузите сотрудников и, возможно, даже сократите их штат, а также завоюете право называться современной компанией, использующей новые технологии. Обязательно напишите об этом в блог интернет-магазина или уведомите подписчиком в соцсетях — поклонников прибавится, отвечаем.

Что ждет нас в будущем?

И это еще только цветочки, ягодки будут впереди. По прогнозам экспертов, нейросети продолжат завоевывать нишу электронной коммерции. Например, совсем не обязательно будет проходить по ссылке на сайт, чтобы купить товар. Это возможно будет сделать прямо из того места, где пользователь увидел эту ссылку. Допустим, читаете вы комментарии в соцсетях и видите ссылку на гаджет своей мечты. Даже сейчас купить его составит пару минут: достаточно пройти по ссылке, добавить в корзину или сразу же оплатить. В будущем процесс покупки еще более упростится: вы сможете оформить заказ прямо в той же соцсети.

Еще один прогноз — штат каждой уважающей себя компании пополнится специалистами, которые понимают, как устроены нейросети. Именно они будут отвечать за все эти новшества и внедрять их в пользование. В принципе, найти таких специалистов можно и сейчас — было бы желании. Вопрос в том, что они будут становиться все более востребованными.

И напоследок

Итак, мы видим, что от искусственного интеллекта не спрятаться, не скрыться, хотим мы этого или нет. В любом случае надо использовать все возможности нейросетей, следить за новинками — благо это направление очень популярно и на рынке постоянно появляются новые программы от разработчиков.

Как работает искусственный интеллект

В последнее время мы все больше слышим об искусственном интеллекте. Он применяется практически везде: от сферы высоких технологий и сложных математических вычислений до медицины, автомобилестроения и даже при работе смартфонов. Технологии, лежащие в основе работы ИИ в современном представлении, мы используем каждый день и порой даже можем не задумываться об этом. Но что такое искусственный интеллект? Как он работает? И представляет ли опасность?

Что такое искусственный интеллект

Для начала давайте определимся с терминологией. Если вы представляете себе искусственный интеллект, как что-то, способное самостоятельно думать, принимать решения, и в целом проявлять признаки сознания, то спешим вас разочаровать. Практически все существующие на сегодняшний день системы даже и близко не «стоят» к такому определению ИИ. А те системы, что проявляют признаки подобной активности, на самом деле все-равно действуют в рамках заранее заданных алгоритмов.

Порой алгоритмы эти весьма и весьма продвинутые, но они остаются теми «рамками», в пределах которых работает ИИ. Никаких «вольностей» и уж тем более признаков сознания у машин нет. Это просто очень производительные программы. Но они «лучшие в своем деле». К тому же системы ИИ продолжают совершенствоваться. Да и устроены они совсем небанально. Даже если откинуть тот факт, что современный ИИ далек от совершенства, он имеет с нами очень много общего.

В первую очередь ИИ может выполнять свои задачи (о которых чуть позже) и приобретать новые навыки благодаря глубокому машинному обучению. Этот термин мы тоже часто слышим и употребляем. Но что он означает? В отличие от «классических» методов, когда всю необходимую информацию загружают в систему заранее, алгоритмы машинного обучения заставляют систему развиваться самостоятельно, изучая доступную информацию. Которую, к тому же, машина в некоторых случаях тоже может искать самостоятельно.

Например, чтобы создать программу для обнаружения мошенничества, алгоритм машинного обучения работает со списком банковских транзакций и с их конечным результатом (законным или незаконным). Модель машинного обучения рассматривает примеры и разрабатывает статистическую зависимость между законными и мошенническими транзакциями. После этого, когда вы предоставляете алгоритму данные новой банковской транзакции, он классифицирует ее на основе шаблонов, которые он подчерпнул из примеров заранее.

Как правило, чем больше данных вы предоставляете, тем более точным становится алгоритм машинного обучения при выполнении своих задач. Машинное обучение особенно полезно при решении задач, где правила не определены заранее и не могут быть интерпретированы в двоичной системе. Возвращаясь к нашему примеру с банковскими операциями: по-факту на выходе у нас двоичная система исчисления: 0 — законная операция, 1 — незаконная. Но для того, чтобы прийти к такому выводу системе требуется проанализировать целую кучу параметров и если вносить их вручную, то на это уйдет не один год. Да и предсказать все варианты все-равно не выйдет. А система, работающая на основе глубокого машинного обучения, сумеет распознать что-то, даже если в точности такого случая ей раньше не встречалось.

Глубокое обучение и нейронные сети

В то время, как классические алгоритмы машинного обучения решают многие проблемы, в которых присутствует масса информации в виде баз данных, они плохо справляются с, так сказать, «визуальными и аудиальными» данными вроде изображений, видео, звуковых файлов и так далее.

Например, создание модели прогнозирования рака молочной железы с использованием классических подходов машинного обучения потребует усилий десятков экспертов в области медицины, программистов и математиков,- заявляет исследователь в сфере ИИ Джереми Говард. Ученые должны были бы сделать много более мелких алгоритмов для того, чтобы машинное обучение справлялось бы с потоком информации. Отдельная подсистема для изучения рентгеновских снимков, отдельная — для МРТ, другая — для интерпретации анализов крови, и так далее. Для каждого вида анализа нам нужна была бы своя система. Затем все они объединялись бы в одну большую систему… Это очень трудный и ресурсозатратный процесс.

Алгоритмы глубокого обучения решают ту же проблему, используя глубокие нейронные сети, тип архитектуры программного обеспечения, вдохновленный человеческим мозгом (хотя нейронные сети отличаются от биологических нейронов, принцип действия у них почти такой же). Компьютерные нейронные сети — это связи «электронных нейронов», которые способны обрабатывать и классифицировать информацию. Они располагаются как-бы «слоями» и каждый «слой» отвечает за что-то свое, в итоге формируя общую картину. Например, когда вы тренируете нейронную сеть на изображениях различных объектов, она находит способы извлечения объектов из этих изображений. Каждый слой нейронной сети обнаруживает определенные особенности: форму объектов, цвета, вид объектов и так далее.

Поверхностные слои нейронных сетей обнаруживают общие особенности. Более глубокие слои уже выявляют фактические объекты. На рисунке схема простой нейросети. Зелёным цветом обозначены входные нейроны (поступаюзая информация), голубым — скрытые нейроны (анализ данных), жёлтым — выходной нейрон (решение)

Нейронные сети — это искусственный человеческий мозг?

Несмотря на похожее строение машинной и человеческой нейросети, признаками нашей центральной нервной системы они не обладают. Компьютерные нейронные сети по-сути все те же вспомогательные программы. Просто вышло так, что самой высокоорганизованной системой для проведения вычислений оказался наш мозг. Вы ведь наверняка слышали выражение «наш мозг — это компьютер»? Ученые просто «повторили» некоторые аспекты его строения в «цифровом виде». Это позволило лишь ускорить вычисления, но не наделить машины сознанием.

Это интересно: Когда искусственный интеллект научится рассуждать?

Нейронные сети существуют с 1950-х годов (по крайней мере, в виде концепий). Но до недавнего времени они не получали особого развития, потому что их создание требовало огромных объемов данных и вычислительных мощностей. В последние несколько лет все это стало доступным, поэтому нейросети и вышли на передний план, получив свое развитие. Важно понимать, что для их полноценного появления не хватало технологий. Как их не хватает и сейчас для того, чтобы вывести технологию на новый уровень.

Для чего используется глубокое обучение и нейросети

Есть несколько областей, где эти две технологии помогли достичь заметного прогресса. Более того, некоторые из них мы ежедневно используем в нашей жизни и даже не задумываемся, что за ними стоит.

  • Компьютерное зрение — это способность программного обеспечения понимать содержание изображений и видео. Это одна из областей, где глубокое обучение сделало большой прогресс. Например, алгоритмы обработки изображений глубокого обучения могут обнаруживать различные типы рака, заболеваний легких, сердца и так далее. И делать это быстрее и эффективнее врачей. Но глубокое обучение также укоренилось и во многих приложениях, которые вы используете каждый день. Apple Face ID и Google Photos используют глубокое обучение для распознавания лица и улучшения качества снимков. Facebook использует глубокое обучение, чтобы автоматически отмечать людей на загружаемых фотографиях и так далее. Компьютерное зрение также помогает компаниям автоматически идентифицировать и блокировать сомнительный контент, такой как насилие и нагота. И, наконец, глубокое обучение играет очень важную роль в обеспечении возможности самостоятельного вождения автомобилей, чтобы они могли понимать, что их окружает.
  • Распознавание голоса и речи. Когда вы произносите команду для вашего Google Ассистента, алгоритмы глубокого обучения преобразуют ваш голос в текстовые команды. Несколько онлайн-приложений используют глубокое обучение для транскрибирования аудио- и видеофайлов. Даже когда вы «шазамите» песню, в дело вступают алгоритмы нейросетей и глубокого машинного обучения.
  • Поиск в интернете: даже если вы ищите что-то в поисковике, для того, чтобы ваш запрос был обработан более четко и результаты выдачи были максимально правильными, компании начали подключать алгоритмы нейросетей к своим поисковым машинам. Так, производительность поисковика Google выросла в несколько раз после того, как система перешла на глубокое машинное обучение и нейросети.

Пределы глубокого обучения и нейросетей

Несмотря на все свои преимущества, глубокое обучение и нейросети также имеют и некоторые недостатки.

  • Зависимость от данных: в целом, алгоритмы глубокого обучения требуют огромного количества обучающих данных для точного выполнения своих задач. К сожалению, для решения многих проблем недостаточно качественных данных обучения для создания рабочих моделей.
  • Непредсказуемость: нейронные сети развиваются каким-то странным путем. Иногда все идет как задумано. А иногда (даже если нейросеть хорошо справляется со своей задачей), даже создатели изо всех сил пытаются понять, как же алгоритмы работают. Отсутствие предсказуемости делает чрезвычайно трудным устранение и исправление ошибок в алгоритмах работы нейросетей.
  • Алгоритмическое смещение: алгоритмы глубокого обучения так же хороши, как и данные, на которых они обучаются. Проблема заключается в том, что обучающие данные часто содержат скрытые или явные ошибки или недоработки, и алгоритмы получают их «в наследство». Например, алгоритм распознавания лиц, обученный в основном на фотографиях белых людей, будет работать менее точно на людях с другим цветом кожи.
  • Отсутствие обобщения: алгоритмы глубокого обучения хороши для выполнения целенаправленных задач, но плохо обобщают свои знания. В отличие от людей, модель глубокого обучения, обученная играть в StarCraft, не сможет играть в другую подобную игру: скажем, в WarCraft. Кроме того, глубокое обучение плохо справляется с обработкой данных, которые отклоняются от его учебных примеров.

Будущее глубокого обучения, нейросетей и ИИ

Ясное дело, что работа над глубоким обучением и нейронными сетями еще далека от завершения. Различные усилия прилагаются для улучшения алгоритмов глубокого обучения. Глубокое обучение — это передовой метод в создании искусственного интеллекта. Он становится все более популярным в последние несколько лет, благодаря обилию данных и увеличению вычислительной мощности. Это основная технология, лежащая в основе многих приложений, которые мы используем каждый день.

Но родится ли когда-нибудь на базе этой технологии сознание? Настоящая искусственная жизнь? Кто-то из ученых считает, что в тот момент, когда количество связей между компонентами искусственных нейросетей приблизиться к тому же показателю, что имеется в человеческом мозге между нашими нейронами, что-то подобное может произойти. Однако это заявляение очень сомнительно. Для того, чтобы настоящий ИИ появился, нам нужно переосмыслить подход к созданию систем на основе ИИ. Все то, что есть сейчас — это лишь прикладные программы для строго ограниченного круга задач. Как бы нам не хотелось верить в то, что будущее уже наступило…

А как считаете вы? Создадут ли люди ИИ? Поделитесь мнением в нашем чате в Телеграм.