Как ребенку объяснить дроби

Содержание

Как научить ребенка математике

Математика — наука «не для всех». Считаете именно так? Опустили руки и решили, что «не дано» (ни вам, ни ребенку)? Рано отчаялись! Есть способы научить ребенка математике быстро и легко. В любом возрасте. Делимся наблюдениями и секретами.

www.vladtime.ru

Современное образование во многом построено на развитии аналитических способностей — это факт, творчеству уделяется совсем мало внимания. Но! О пользе развивать оба полушария головного мозга слышал, пожалуй, каждый. Все в ваших руках! Ищите нестандартные методы и решения, тогда ваш ребенок полюбит математику и не будет испытывать сложностей в школе.

Психологи сообщают неутешительную статистику.

В школу приходит более 50% детей с творческими задатками, а уже через полгода их число снижается до 10%.

А все почему? От них требуется все делать «как учительница сказала», главный мотив — угодить учителю, маме и т.п.

Математика требует абстрактного мышления, но у младших школьников оно развито плохо.

Это данность, которую важно понять и принять. Как родителям, так и педагогу предметнику, который взял пятый класс, и на фоне старшеклассников, конечно же, чувствует колоссальную разницу.

avatars.mds.yandex.net

Родители «в шоке», ребенок «в стрессе». Как так, ОН НЕ ПОНИМАЕТ МАТЕМАТИКУ… А вот так! Он хочет понять, но не всегда может это сделать без квалифицированной помощи взрослого. А мама и папа не всегда знают, как правильно объяснить, ведь их «учили не так», да и современные учебники не всегда могут похвастаться доступностью и грамотностью изложения материала.

Итак, постараемся понять, чем мы можем помочь ребенку в математике, не дожидаясь, пока появятся проблемы в старших классах.

У ребенка проблема с математикой? Есть решение!

Чтобы привить ребенку интерес к математике и научить ее любить, не ждите начала обучения в школе. Займитесь математикой с ребенком гораздо раньше. В игре, в обычных ежедневных заботах и хлопотах, во время прогулок и походов в гости. Отвечайте на вопросы, проигрывайте нестандартные ситуации и давайте малышу «пищу для ума».

steshka.ru

ПРОБЛЕМА: Ребенок не может что-то посчитать в уме.
Причина: Он не может представить, ему нужно увидеть предметы счета, произвести с предметами какие-то действия.
Решение: Попробуйте использовать «абакус» (счеты) или другую наглядность. Это поможет ребенку «почувствовать» числа. Рисуйте графики, схемы, объясняйте «на кошках» — все, что угодно, главное — НАГЛЯДНО! И это касается любых тем в любом классе.

Просто к пяти прибавить шесть — это ни о чем, а вот к пяти ЯБЛОКАМ прибавить три ЯБЛОКА — тут все предельно ясно. Ребенок не понимает дроби? Попробуйте резать пиццу или ломать палочки. Возможно ваш путь в математику именно такой!

Если ваш малыш делает первые шаги в мире математики, начинает изучать цифры и учится считать, рекомендуем почитать:

  • Математика с пеленок: запоминаем цифры и учимся считать
  • Как научить ребенка считать до 10
  • Как научить детей быстро считать: математика до школы
  • Как научить ребенка считать
  • Научить ребенка считать в уме – просто!

ПРОБЛЕМА: Ребенок не может выучить таблицу умножения.
Решение: Используйте не «зубрежку», а другие методы. На самом деле, из 100 примеров выучить нужно всего 15, остальные поддаются «дрессировке». Можете попробовать ментальную арифметику. И успокойтесь. Можно не знать таблицу умножения, но успешно ее использовать. В конце концов — важна логика мышления. На крайний случай можно и сложением/вычитанием заменить.

Полезные советы вы найдете в наших статьях:

  • Как объяснить ребенку деление столбиком во 2-3 классе
  • Как объяснить ребенку дроби: 5 класс не за горами

ПРОБЛЕМА: Ребенок не любит математику.
Причина: Не любят обычно то, что плохо получается, где нужно прикладывать много усилий, где не радует результат (плохие отметки), не нравится учитель.
Решение: Найдите первопричину и попробуйте исправить ситуацию.

Традиционная методика обучения математике основана на разделении материала на блоки. А вы попробуйте мыслить иначе.

Вот пример. Дошкольнику дают 3 палочки и просят составить из них квадрат. Не получается. Что делать? Дают еще одну. Из четырех палочек все получилось. Обычная ситуация из жизни. Но! В 4 классе, на теме «Периметр квадрата» этому ребенку не нужно будет вдалбливать правило, что периметр — это то-то и то-то. Он ВСПОМНИТ 4 палочки и САМ найдет решение в своей голове, ДОДУМАЕТСЯ до него. Если в математике использовать такой подход, у ребенка не возникнет проблем, он полюбит этот предмет и с радостью будет решать задачи, уравнения примеры.

Чаще используйте занимательный материал, чтобы привить ребенку интерес к математике.
Рекомендуем почитать:

  • Математическая магия: фокусы для детей, умеющих считать
  • Магия чисел: волшебные числа, которые могут «угадывать» возраст

«У него нет способностей к математике». Это утверждение не выдержит никакую критику, если ребенок достаточно успешен по другим предметам. Например, по иностранному у него нет проблем, а там тоже нужна логика. Значит, дело не только в способностях…

Если ребенок не уверен в себе, очень зависит от мнения окружающий (родителей, учителей), он, как правило, может испытывать бОльшие трудности, чем любознательный и уверенный в себе ученик. Постарайтесь в таком случае объяснить, что трудности — это нормально, и если систематически заниматься математикой в школе и дома, все будет хорошо.

«Эффект снежного кома» наступает тогда, когда появляются пробелы в знаниях (пропустил, не выучил, не понял и т.п.). Нужно не допускать таких ситуаций, своевременно наверстывать упущенное.

ПРОБЛЕМА: Ребенок не умеет решать задачи.
Причина: Иногда школьнику не совсем понятен смысл написанного, суть вопроса.
Решение: Для начала попробуйте «перевести» условие задачи на понятный ребенку язык. Можно рассказать его своими словами, как сказку или веселую историю. Можно зарисовать в виде схемы или даже комикса. Как только появится «эмоциональная составляющая», решение может прийти неожиданно быстро.

Как научить ребенка решать задачи: рекомендации родителям

Вопрос «Как научить ребенка решать задачи по математике» преследует некоторых родителей даже во сне. Как? Как сделать так, чтобы он наконец понял?

Решать задачи ребенку придется часто: и по математике, и по алгебре, и по геометрии, и по физике, и по химии. Поэтому стоит раз и навсегда понять, как это делать, ведь есть общие закономерности, которые применимы к любому предмету. Мама не может (и не должна!) учиться в школе ВМЕСТО сына или дочки, и уж тем более не должна делать «домашку» вместо них. Вместе — да, но не ВМЕСТО!

soroban.ua

«Решение задач — это практическое искусство, подобно плаванию, или катанию на лыжах, или игре на пианино: вы можете научиться этому, только практикуясь … если вы захотите научиться плавать, то вынуждены будете зайти в воду, а если вы захотите стать человеком, хорошо решающим задачи, вы вынуждены их решать». (Математик и педагог Д. Пойа).

Любая задача состоит из 4 составляющих:

1. Условие
2. Вопрос
3. Решение
4. Ответ

Самое главное, чему нужно научить ребенка:

  • Ответ задачи скрыт в ее условии.
  • Ответ нужно списывать с вопроса.
  • Ответ всегда начинается с числа.
  • Ребенок должен четко знать значение «математических фраз»: «больше/меньше в… раз», «больше/меньше на…» и др.
  • Ребенок должен знать понятия «слагаемое», «уменьшаемое», «вычитаемое» и т.д.

Только после этого условия задач не будут казаться такими запутанными и сложными, а решение станет простым и очевидным.

Что нужно сделать, чтобы решить задачу по математике?

  • Нужно внимательно прочитать задачу и выделить эти 4 части.

Решение любой задачи сводится к одному: по двум данным найти третье (неизвестное). Итак, что нам известно? Что мы должны найти?

  • Составить краткую запись, сделать схематический рисунок или любым другим способом превратить задачу в «живую» наглядность.

Это поможет ребенку понять, что происходит в тот момент, который описан в условии задачи. Иногда можно продемонстрировать, как «Коля раскладывал тетрадки на 3 стопки…» или как «Миша разрезал яблоко на 4 части…» Разыграйте сценку, чтобы ребенок оказался сам «внутри задачи».

  • Проверьте правильность решения обратной задачей.

Не торопитесь сообщать, что «ты решил верно» или «ответ не верный». Подставьте получившиеся значения и проверьте. Возможно, не так все просто, в задаче не одно, в два или даже три действия. Пусть ребенок порассуждает сам, вы лишь направляйте.

Чтобы научить ребенка решать задачи, нужно сформировать привычку это делать, и делать это с удовольствием. А этому можно научить!

К решению любой задачи нужно подходить творчески. Не получается так — попробуйте иначе.

  • Попробуйте дать задачу, которая содержит лишние сведения. Ребенок сам почувствует, что важно, а что можно смело «опустить».
  • Попробуйте нестандартные ситуации. Пусть в вашей задаче будет два или даже три варианта решения.

И самое главное! Не ждите, что вы научите ребенка решать задачи, выполнив с ним одну-две похожих. Навык нужно довести до автоматизма, задачи нужно научиться «чувствовать».

Главные выводы

  • Ребенок знает не то, чему его научили, а то, с чем он столкнулся в жизни.

Поэтому в математике главное не учебный материал, а те методы, с помощью которых ребенок его осваивает.

  • В обучении ребенка математике важна мотивация.

Постарайтесь поговорить со своим школьником. Объясните, что он учится не ради отметок в дневнике, не для того, чтобы угодить учительнице и порадовать маму, и даже не для того, чтобы поступить в ВУЗ. Работодателю не нужны люди, которые могут быстро умножать и делить — для этих целей есть калькулятор и «умные» бухгалтерские программы. Нужны люди, умеющие анализировать, выдвигать гипотезы, придумывать новые пути решения.

В беседе постарайтесь уцепиться за то, чем ваш ребенок увлечен. Математику можно «прикрутить» практически к любой сфере деятельности: программисту — нужна, инженеру — нужна, строителю — нужна и т.п. Ребенок-гуманитарий скажет вам «фи», но и тут можно найти аргументы «за». Возможно, квадратные уравнения ему не особо пригодятся, но умение аналитически мыслить, которое он приобретет в результате их решения, пригодится в жизни на все 100%.

Помогите ребенку увидеть в изучении математики СМЫСЛ!

  • Быстрый счет — не самоцель.

Научить ребенка быстро считать — не так важно, как научить его мыслить. Нестандартная задача поставит «обычного» ученика в тупик, а мыслящий — найдет решение.

  • Математику не нужно бояться.

Помогите ребенку преодолеть страх перед математикой. Не нагнетайте обстановку, не говорите, что это трудно, не блокируйте познавательный авантюризм.

Как научить ребенка решать задачи

За все школьные годы вашему ребенку придется решить множество задач, и несмотря на то, что все они кажутся разноплановыми, в алгоритме их решения все же есть общие моменты, и, уяснив их и следуя этому алгоритму, ребенок сможет решить практически любую задачу. Если ученик еще в 1-3 классе освоит тактику решения задач, в старших классах он будет щелкать задачки как семечки не только по математике, но и по физике, химии, геометрии тоже.

Ошибки в решении задач

Задачи можно условно разделить на части: условие, вопрос, решение, ответ.

Первая и самая главная ошибка — ребенок невнимательно, вскользь прочитал условие задачи.

К примеру задачка. У Пети 8 монет, это на 3 меньше, чем у Васи. Сколько монет у Васи.

Ребенок видит «на 3 меньше», значит надо что-то отнять, а отнять можно только от 8, так и получается 8-3=5 монет у Васи. Но если внимательно прочитать условие, то меньше то конфет как раз у Пети.

Чтобы такой путаницы не было, требуйте с ребенка записать условие задачи.

П.- 8 м. на 3 м. <

В.- ?

Ошибка вторая — в решении.

Когда вопрос в задаче один, тут все просто. Но когда в задаче есть несколько неизвестных — решение затрудняется. Решаем по действиям. Для начала определим, каких данных нам не хватает, затем найдем эти числа, подставим их и решим задачу.

Ошибка третья — неправильная запись ответа.

К примеру, требуется найти сколько монет, а ребенок пишет сколько человек. Нужно внимательно еще раз прочитать вопрос задачи, перед тем, как записать ответ. Что требуется найти, то и пишем в ответе. Ответ начинается с числа.

Алгоритм решения

  1. Внимательно прочти задачу и представь, о чем в ней говорится.
  2. Запиши в виде схемы, что известно и что не известно, что нужно найти.
  3. Подумай, можно ли сразу ответить на вопрос задачи.
  4. Сначала вычисли значения, которых не хватает для нахождения ответа.
  5. Найти ответ на главный вопрос задачи.
  6. Проверь ответ.
  7. Прочти еще раз вопрос задачи.
  8. Запиши ответ.

В решении любой задачи мы по двум известным данным находим третье. В решении рассуждаем с конца, как бы разматывая клубок. Чтобы узнать то, нам нужно это, а чтобы узнать это, у нас есть все данные.

Учите ребенка рассуждать. Если для него это затруднительно, потренируйтесь на задачах с лишними или недостающими данными.

Васе 8 лет. Он живет в доме номер 7 в 5-й квартире. У него есть двоюродный брат, который живет в квартире напротив. Брат на 3 года старше Васи. Еще у них вместе есть 2 кошки и хомячок.

Нужно вычеркнуть данные, которые не понадобятся для поиска ответа и дописать вопрос задачи.

Васе 8 лет. Он живет в доме номер 7 в 5-й квартире. У него есть двоюродный брат, который живет в квартире напротив. Брат на 3 года старше Васи. Еще у них вместе есть 2 кошки и хомячок. Сколько лет брату?

Второй вариант тренинга — самому придумать несколько задач на одно решение.

К примеру: 8+3

Вася получил за четверть 8 четверок, а пятерок на 3 больше. Сколько пятерок получил Вася?

В аквариуме было 8 гуппи и 3 сомика. Сколько рыбок было в аквариуме?

Третий вариант — дополнить условие, в котором не хватает данных.

Пример: У Васи 4 конфеты, а у Сони меньше. Сколько конфет у Сони?

Дополним условие: У Васи 4 конфеты, а у Сони на 2 меньше. Сколько конфет у Сони?

При прочтении для наглядности можно подчеркнуть нужные для решения данные.

Основные типы задач

Простые задачи на сложение и вычитание

Репетитор по математике о задачах на дроби в 5-6 классе

Задачи на части (на дроби) в 5 — 6 классе, безусловно, тяжелейшая тема для преподавания. Возможно даже самая тяжелая за весь школьный курс. Как может построить свою работу с ней репетитор по математике? Рассмотрим некоторые приемы обучения решению таких задач, опишем связанные с темой проблемы и поговорим о ее дидактике.

Причиной большинства обращений к репетитору в 5 классе является повальное непонимание законов разделения на части. Это естественно, ибо задачи, на которых формируется представление о долях, предъявляют достаточно высокие (для этого возраста) требования к уровню развития ученика, часто связанные с его физиологией. Этот обстоятельство часто не позволяет репетитору математики действовать стандартно, опираясь на традиционые объяснения.

Несмотря на влияние физиогогии родители ребенка обычно стараются повлиять на ситуацию как можно быстрее. Большинству из них нужен репетитор по математике для скорейшего исправления текущей отметки. Иногда это мешает планомерно и неспешно объяснять математические законы и выстраивать темы в логически правильном порядке.

Долгое время я не решался написать об этих задачах. И дело не только в сложности восприятия материала школьниками. В изучении темы выделяется несколько этапов с различными ограничениями в использовании чисел. Не случайно дроби проходят не один год. Программа 5 класса переплетается с программой 6-го класса (а по Петерсону еще и с четвертым). Поэтому даже при одном и том же характере работы преподавателя с дробями разница в индивидуальных особенностях учеников и программах не позволяют описать методы работы репетитора по математике с темой точно и коротко. Более того, в разных учебниках «доли» изучаются в разное время, по-разному «обкладываются» задачами и по-разному интегрируются в дидактику смежных тем. Поэтому очень сложно охватить все проблемы. Надеюсь, что репетиторы по математике со стажем меня понимают.

Много раз я сталкивался с проблемами задач на дроби и уяснил для себя главное: тема требуют постепенного и долгого изучения. Ее нельзя проработать за один-два урока. Поэтому первое, что я делаю, — объясняю родителям ситуацию и прошу предоставить дополнительные часы для занятий. Не менее двух раз в неделю. Для репетитора по математике это стандартный график, позволяющий в большинстве случаев полноценно заниматься пробелами.

Репетитор по математике о своей методике

Формально мой подход не отличается от того, что предлагают другие репетиторы, а именно — решение задач в большом количестве. Однако к ним еще нужно поготовить ученика, предложить ему некий план или даже алгоритм подбора пути решения. К сожалению, его точность и прозрачность не всегда соответствует желаемому. Репетитор по математике должен понимать, какие задачи и с каким учеником следует разбирать, в каком порядке и в каком количестве. Подходы разных преподавателей могут отличаться порядком разбора задач, пояснениями, терминологией, сопровождениями в рисунках, схемах и даже их полным отсутствием. Я использую собственную базу типовых примеров и наводящих вопросов, систему записей, оформлений и обозначений (немного схожую с Петерсоновской). Оптимизирую краткие записи к задачам, делаю их удобными, информативными и ориентированными на поиск решения.

Попробую изложить …

Разбор элементарных задач

Первый этап работы репетитора — знакомство ученика с базовыми задачами, обучение составлению для них кратких записей. Очень важно вложить в ученика мысль о том, что сложная задача на дроби состоит из нескольких упакованных в нее простых, с определенной последовательных элементарных операций. Их выделением и проработкой репетитор по математике занимается на первом уроке.

Выделяется 3 типа простейших задач на дроби:
1) Целая величина известна
2) Целая величина неизвестна
3) Неизвестна дробь

Для каждой из них подбирается реальная ситуация, которую удобно моделировать рисунком. Распространены примеры деления яблока или плошади. Например: Яблоко имеет массу 160 грамм, найдите вес яблока. Пример стандартный, но подходит не всех ученикам, ибо для проверки правильности демонстрируемых репетитором ариметических действий приходится делить то, что нельзя взять в руки, именно вес. При низком интеллектуальном уровене развития ученика репетитор по математике оказывается бессильным что-либо ему объяснить, ибо проблемы уходят далеко от темы «дроби». Если такое происходит, я использую пример с полом:

Пол выложен одинаковыми плитками как показано на рисунке. На каждую плитку положили по шарику. Сколько шариков лежит на пола?
Преимущество этого примера в том, что ребенок может не только выделить (закрасить) 5/8 пола, но и пересчитать количество шариков непосредственно. При этом репетитор по математике указывает на возможность ответить на вопрос через простые арифметические действия (на рядах и колонках).

Наводящие вопросы репетитора по математике

Cлабого ребенку можно еще и полдвести к выполнению действий. Для этого репетитор по математике задает ему систему наводящих вопросов, например:

Репетитор: сколько колонок на рисунке?
Ученик: 8 колонок
Репетитор: сколько шариков расположено в одной колонке?
Ученик: 4 шарика
Репетитор: Каким действием это можно найти?
Ученик: 32:8=4
Репетитор: сколько колонок в 5/8 пола?
Ученик: 5 колонок
Рептитор: Если в одной колонке 32:8=4 шарика, то в пяти колонках шаров будет …
Ученик: шариков.
Привильно !!!!!

Главное преимущество задачи на плитки и шарики состоит в использовании арифметических действий, каждое из которых удается проверить простым пересчетом. После того, как репетитор по математике убедился в понимании действий, он диктует ученику проверенное правило: «делим на знаменатель и умножаем на числитель».

Несмотря на то, что можно пересчитывать количество не шариков, а самих плиток, я намеренно оставляю шары в сюжете задачи. Почему? На их примере изучается ситуация, когда какой-нибудь целый объект удерживает внутри себя (или на себе) мелкие объекты (в нашем случае пол удерживает шарики). Это широко распространено в дидактике математики 5-6 класса. Часто что-то куда-то засыпается, заливается, вкладывается и равномерно распределяется по объекту. В мешки засыпают сахар, в бидоны заливают молоко и т.д. Репетитор по математике на примере шариков помогает ребенку быстрее разобраться в числовых особеннностях этих ситуаций и понять законы измерения частей объектов.

Далее … На том же рисунке с шариками нужно поставить обратную задачу: Допустим, мы знаем, что на 5/8 пола лежит 20 шаров. Как найти их общее количество? И здесь репетитору по математике тоже помогает рисунок, на котором можно просто пересчитать кружочки. Легко подбирать и комментировать выполняемые действия: . Все ясно и прозрачно. Наводящие вопросы (если они нужны) аналогичны первому случаю.

Репетитору по математике важно остановиться на терминологии и оформлении краткой записи.От того, насколько как она будет зависит идентификация правил. Ученик должен усвоить, что целый объект — это такая же величина, как и его часть, измеряемая двумя единицами: привычной (метрами, сантиметрами, килограммами, литрами, страницами, деревьями, шариками и т.д.) и «особой». В роли последней выступает целая величина. Рядом с ней в кратких записях можно поставить 1ед. Все участники элементарной задачи получают названия. То, от чего ищется часть называется целой величиной, сама дробь так и остается дробью, а часть, которую находят от целого репетитор по математике называет «частью» или «значением» дроби». Я предпочитаю второй вариант.

Как правило, к репетитору обращаются в момент, когда тема набрала обороты и в классе решают в перемешку задачи на разные базовые правила. Поэтому, их приходится включать в один урок. Если ребенок не самый слабый, то вместо плиток я применяю яблоко, причем с одним и тем же набором значений величин для всех типов задач. Выписываю из образцы в отведенную для этого теоретическую тетрадь (или на форзац рабочей тетради). Каждую запись отдельно комментирую и специальным образом оформляю:
Задача 1-го типа: целая величина известна.
(г) -вес части яблока.
Чтобы найти значение дроби нужно целую величину разделить на знаменатель и умножить на числитель.

Задача 2-го типа: целая величина неизвестна.
(г) — вес яблока.
Чтобы найти целую величину нужно значение дроби разделеить на числитель и умножить на знаменатель.

Задача 3-го типа: неизвестна дробь.
(яблока) -вес его части

В третьей задаче для 5 класса репетитором по математике должны быть выбраны другие числа, ибо сократить дробь пятиклашки еще не могут. Обратите внимание на то, что обыгрывается один и тот же комплект чисел. В первой задаче репетитор по математике находит целого яблока, а во второй выполняет обратные действия: по той же дроби и найденному ранее значению 100 восстановливает число 160 (его даже можно в определенный помент стереть ластиком). Прием обратных действий полезен для работы с невнимательными школьниками. Он позволяет быстро сконцентрироваться на правилах, а не на изучении нового условия новой задачи. Более того, при заранее изветном ответе ребенок убеждается в правильности выбора этих действий. Действительно, как можно в них усомниться, если репетитор по математике получает в ответе то, что и должно получиться?

Под каждой краткой записью оформляется решение и записывается правило:

1) чтобы найти значение дроби, нужно целую величину разделить на знаменатель и умножить на числитель.
2) Чтобы найти целую величну нужно разделить на числитель и умножить на знаменатель.
3) Чтобы найти дробь нужно разделить ее значение на целую величину.

Как репетитор математики работает с комбинированными задачами

Чаще всего они встречаются в 6 классе, хотя в учебнике Петерсона сочетания двух и даже трех типов задач предлагаются уже в 5 классе. Прежде всего ученик должен знать с чего начинать исследование задачи. Важно отработать каждый его этап в отдельности.

Краткая запись

Краткая запись к задаче — важнейший и незаменимый элемент методики любого хорошего репетитора по математике. Она является одновременно и опорой и средством заставить ученика перечитывать условие как минимум — два три раза. Правильно составленная краткая запись в сочетании с четкими правилами «трех типов» позволяют разложить комбинированную задачу на несколько элементарных. Поэтому репетитору чрезвычайно важно научить правильно ее составлять.

Как репетитор по математике работает с текстами?
Главной проблемой составления краткой записи является проблема анализа текста задачи. Практика показывает, что дети крайне невнимательно и низкоэффективно с ним работают. Не умеют выделять ценную информацию о величинах и сами величины, сортировать главное и второстепенное. Для борьбы с такими проблемами репетитор математики может взять на вооружение метод слежения. Что такое краткая запись? — всего лишь короткий текст условия, из которого выброшены лишние слова, а названия величин и их значения записаны отдельными строками. Что мешает репетитору по математике выделять эти слова в тексте? Особенно важно научить поиску целых величин, на которые в краткой записи будут указывать стрелки. Репетитор должен обратить внимание ученика на то, что слово или фраза, написанная сразу после дроби, указывает на единицу измерения дроби, то есть на ее целую величину. Репетитору по математике никто не запрещает выделить ее в тексте (подчеркнуть или записать другим цветом) и поставить к ней стрелочку. Пример оформления:

Если внимание ребенка ослаблено, на первых порах ему лучше предлагать уже размеченные тексты, с выделенными целыми величинами и стрелочками.

Для того, чтобы не пропустить ни одну из участвующих величин репетитору по математике нужно задать вопрос: Что в задаче можно измерить? Пок ученик думато, репетитор подчеркивает в тексте соответствующие им слова. В нашем случае это показано синим цветом.

Важно отработать поиск и применение типовых задач внутри комбинированной. Дети часто путают когда им делить на знаменатель, а когда на числитель. В 6 классе путают умножать ли на дробь или делить на нее. Проблема усугубляется когда в задачу встревает еще и сумма (разность) величин. Ребенок пытается запомнить эти ситуации, но от их многообразия пухнет голова. Чем может помочь ему репетитор по математике? Самое эффективное запоминание — зрительное. При многократном зрительрном анализе ребенок «фотографирует» расположение известных и неизвестных компонент выделенных репетитором строк (связанных «дробной стрелкой») и распознает эту же комбинацию величин в другой задаче. по нему в другой задаче что именно надо лелать. Для увеличения числа обращений к правилам типовых задач я рекоментдую репетиторам по математике использовать визуальные образы задач (без текстов). Репетитор подает ученику задачу ее краткой записью с полной информацией о всех известных взаимосвязях между величинами . Сложности возникают с суммами нескольких величин. В таком случае репетитору по математике приходится искать дополнительные обозначения для суммы. Я решил это пробьлему так: поле суммы закрашивается, а поля ее слагаемых обводятся тем же цветом по периметру. Очень удобно. Если какое-то из слагаемых тоже равно сумме других, более мелких величин, то его внутренняя частсь закрашивается другим цветом, а поля слагаемых этим же цветом обводятся по контуру. И таких вложений может быть сколько угодно.

Например, краткая запись к задаче про вишню может быть следующей:

Попрбуйте составить краткую запись к олимпиадной задачке: мама испекла булочки. Аня съеха 2/3 всех булочек и еще 2. Петр съел 2/3 остатка и еще 2 булочки, а Денис съел 2/3 последнего остатки и последние 2 булочки. Сколько булочек испекла мама?

Александр Николаевич, репетитор по математике Москва (м.Щукинская, Строгино)

Метки: Работа репетитора, Репетиторам по математике

Как объяснить ребенку дроби

Тема дробей является одной из самых трудных для школьников. Однако любая сложная задача становится намного проще и интереснее, если подойти к ней увлеченно, с фантазией и превратить ее в игру. Будущему школьнику дружба с дробными числами покажется не такой уж сложной, если начать знакомство заранее. Поэтому, несмотря на то, что по школьной программе эту тему проходят в 5 классе, начать знакомство с дробями, их смыслом и простейшими операциями с ними можно и нужно еще в старшем дошкольном возрасте. Таких детей даже не придется обучать целенаправленно, они прекрасно усваивают материал через игру и творчество.

Что нужно знать о дробях прежде всего?

  • Дробь — нецелое число, обозначающее некоторое количество частей или долей от целого.
  • Дробь всегда меньше целого.
  • Чем больше в целом долей, тем эти доли мельче. И наоборот, разделив целое пополам, получим две большие равные доли.

Как сделать изучение дробей наглядным?

Детям намного проще усваивать новое, если примеры будут наглядными. Самый доступный способ продемонстрировать принцип действия дробных чисел — это еда. Прекрасно с этой целью справятся яблоки, плитка шоколада или торт. Разделите яблоко вместе с ребенком поровну на всех членов семьи.

Еще один замечательный способ наглядного изучения дробей — детали конструктора. С их помощью ребенок может довольно быстро освоить простые примеры сложения и вычитания дробей, а также их сравнение.

Вполне доступным и увлекательным изучение дробей можно сделать с помощью аппликаций, рисунков и пластилина. Совместное творчество с регулярными комментариями — прекрасный способ совместить приятное с полезным.

Как правильно познакомить ребенка с дробями?

Если вы решили помощь ребенку освоить дроби, не стоит сваливать на него всю информацию сразу. Ненавязчиво, понемногу, вооружившись доступными примерами из повседневной жизни, разговаривайте с ребенком о целых предметах и кусочках, о том, как из кусочков собрать целое и как из целого получается много-много частей.

Для начала объясните ребенку понятия “часть” и “целое”. Вот шоколадка, целая, вкусная. Она состоит из долек, кусочков, частей. Предположим, их 10. Малыш отломал кусочек — и вот у него в руках 1 кусочек из 10. Отломал еще для мамы кусочек — получилось уже два кусочка из 10. Регулярно повторяйте подобные эксперименты с пиццей, мандаринами или стаканом молока. Теория должна хорошенько закрепиться и усвоиться. Отрабатывать полученные знания на практике можно также на нашем сайте — в блоке “Обучение” есть много интересных заданий по математике, с помощью которых ребенок может потренироваться в изучении частей и целого.

Далее можно приступать к объяснению понятия “доли”. Пусть ребенок разделит апельсин или шоколадку на равные части, чтобы всем хватило и никто не обиделся. Эти части называются доли. Доли — это то, из чего состоит целый предмет. В шоколадке, состоящей из 10 равных кусочков, 10 долей. Если яблоко разрезать пополам, будет две доли, каждая из которых представляет собой половину целого яблока.

Когда ребенок достаточно успешно разберется в том, что такое часть, целое и доли, можно вводить понятие “дробь” и начинать дробить вместе с ним все, что попадется под руку: те же шоколадки или яблоки. Смысл самого процесса остается прежним. Дроби придумали для того, чтобы обозначать количество долей, взятых из целого и оставшихся в целом. Показатель под чертой (знаменатель) обозначает количество долей в целом предмете, а число над чертой (числитель) — количество долей, которые мы хотим взять. То есть если у нас была шоколадка из 5 равных кусочков, а мы взяли 1, то дробь, выражающая это наше действие, выглядит как 1/5, а произносится как “одна пятая” (слово доля здесь опускается, но подразумевается).

Целый предмет тоже можно выразить через дробь. Для демонстрации этого отлично подойдет упаковка конфет. Коробочка целая, если в ней 10 конфет, каждая конфетка на своем месте. 10 конфет — 10 частей, и целая упаковка — 10 штук. Получается, что 10/10 — это целая упаковка конфет, 1 упаковка. При изображении целого числа с помощью дроби числитель и знаменатель — всегда одно и то же число, обозначающее все доли, составляющие целый предмет.

Таким образом, если ребенок уже умеет писать и готов учиться записывать дроби, постарайтесь постоянно напоминать ему последовательность, задавая наводящие вопросы. Сколько всего частей в целом предмете? Пишем под чертой. А сколько частей мы взяли из этого целого предмета? Пишем над чертой. Это довольно просто, если разобраться.

Когда ребенок активно знакомится с долями и целыми, он должен понимать, что дробные числа — это не просто замысловатые математические задачки, а вполне обычное явление в повседневной жизни. Продемонстрируйте ему, что дроби пригодятся, например, когда малыш захочет поделить свои конфеты с другом. Расскажите, что дробями измеряют не только апельсины или торты, но и объемы жидкости, расстояние маршрута, деньги и даже время. Когда вы готовите ужин, гуляете в парке или путешествуете по гипермаркету со списком покупок — в любой подходящей ситуации показывайте ребенку на живом примере, как работают дроби, для чего так необходимо в них разбираться и как их следует использовать. Понимая пользу и необходимость практического применения, детям будет интереснее и проще подружиться с такой непростой темой.

педагог-психолог Антонина Валевич

Закономерность — это регулярные устойчивые взаимосвязи в количествах, свойствах и явлениях объектов. В математической закономерности нужно найти алгоритм, согласно которому в цепочке чисел происходит их повторение, изменение или замещение в соответствии с установленным правилом.

В чем смысл игры?

Игры такого рода развивают умение выделять закономерности в последовательном ряде элементов. Для этого сначала нужно внимательно рассмотреть задание: сравнить соседние объекты и попробовать определить правило закономерности.

Решить задачу можно с помощью простого счета, обобщения по какому-либо признаку или простого анализа рисунка, текста или схемы.

Как научить ребенка находить закономерности?

Маленьким детям, для решения задач на поиски закономерностей, понадобится только смекалка и воображение. Достаточно лишь объяснить, как можно установить закономерность между звеньями ряда. Если задачу решить не получается, то вместо прямых подсказок следует задать дополнительные вопросы, не раскрывая решение задачи полностью.

В любом случае, пользы будет больше, если ребенок решит, хотя бы одну задачу самостоятельно, нежели взрослый просто расскажет, как её решать.

Рассмотрим способы, которые помогут ребенку понять закономерности и последовательности в заданиях.

Инструкция по решению числовых последовательностей:

  • Найти разницу между двумя рядом стоящими числами
  • Определить алгоритм построения последовательности
  • Применить алгоритм к следующей паре чисел
  • Использовать алгоритм для определения следующего числа в ряду

Инструкция по нахождению закономерностей в заданиях с геометрическими фигурами:

  • Рассмотреть фигуры и разделить их, на повторяющиеся группы
  • Определить какой элемент изменился в группе
  • Решить, какая именно фигура отсутствует или является лишней.

Задания для 1 класса

Задание 1

Раскрась дорожки для зайчика и белочки, сохраняя закономерность.

Решение: Белочка и зайчик бегут по разным дорожкам. У каждой дорожки есть своя закономерность. У зайчика повторяется 3 цвета на дорожке: красный, голубой, жёлтый, а у белочки 4: зеленый, коричневый, фиолетовый, жёлтый.

В этом задании можно обратить внимание на то, что обе дорожки состоят из 12 кругов. Но количество повторяющихся цветов разное.

Задание 2

Найди закономерность в ряду геометрических фигур.

Решение: В этом ряду нужно обратить внимание на размеры фигур, а не на цвет и форму. Сначала идет одна большая фигура, а за ней две маленькие, далее они повторяются.

Задание 3

Нарисуйте в четвертом квадрате правильный ответ.

Решение: Рассмотрев внимательно рисунок, мы увидим, что круги в квадратах исчезают по одному, против часовой стрелки. В этой задаче имеет значение только расположение кругов квадрате. Таким образом, в последний квадрат мы должны нарисовать один синий круг в нижнем левом углу.

Задание 4

Соблюдая закономерность, продолжи ряд чисел до 10. Сформулируй правило, которое действует в этой закономерности. Используя это правило, придумай свою закономерность.

  • 2, 4, 6,…

Решение: В этом ряду каждая цифра увеличивается на 2 относительно предыдущей – мы вычислили правило для данной закономерности. Значит, чтобы продолжить ряд, мы прибавим к каждой следующей цифре по 2. Ответ будет выглядеть так: 2,4,6,8,10.

Чтобы придумать подобную закономерность, нужно использовать сформулированное выше правило: например, 1,3,5,7,9.

Задания для 2 класса

Найди закономерность и в пустом квадрате нарисуй нужное количество кругов.

Решение: В таблице в первом горизонтальном ряду количество кругов увеличивается на 1. Во втором ряду увеличивается на 2. Таким образом, можно предположить, что в третьем ряду количество кругов будет увеличиваться на 3 и ответ будет 9. Можно заметить, что и в вертикальных рядах эта закономерность повторяется.

В цепочке чисел найди закономерность и вставь пропущенные числа

  • 95, 90, 85, 80, 75,_, 65,_, _,50

Решение: В цепочке чисел можно выделить пары: 95 -90, 85 – 80 и далее. Каждый раз, в паре, число уменьшается на 5. Значит, после 75 запишем 70, после 65 — 60, а затем 55 .

Найди закономерность и продолжи последовательность.

  • 2, 3, 5, 8, …, …, …, …

Решение: В этой цепочке чисел к каждому последующему числу прибавляется предыдущее. 2+3=5+3=8+5=13+8=21+13=34 и далее.

В поезде едут геометрические фигуры. Нарисуйте фигуры, в четвёртом вагоне, соблюдая закономерность их расположения.

Решение: В поезде едут геометрические фигуры: квадрат, треугольник, прямоугольник и круг. В трёх вагонах все места заняты фигурами, в определённом порядке. Расставим их и в четвертом вагоне: Круг в нём будет располагаться в нижнем левом углу, квадрат в верхнем левом, треугольник поедет в правом нижнем, а прямоугольник – в левом верхнем углу.

Задания для 3 класса

Рассмотрите картинку и найдите закономерность в задаче.

Решение: В таблице мы увидим такую закономерность:

8-5=3, то есть число увеличилось на 3; далее 14-8=6, соответственно, число увеличилось на 6. В последней связке 23-14=9 число увеличилось на 9. Мы делаем вывод, что каждое следующее число увеличивается на предыдущее значение+3. Таким образом, следующее число увеличивается на 9+3=12. 23 + 12 = 35. Ответ: 35.

В пустые клетки вставьте геометрические фигуры, сохраняя закономерность.

Решение: Чтобы выполнить задание, нужно фигуры расставить по порядку, друг за другом, соблюдая последовательность. Значит, после прямоугольника стоит круг, треугольник и квадрат и т. д.

Найди закономерность и продолжи ряды:

  • 12, 23, 34, 45, 56…
  • 13, 24, 35, 46…

Решение: В этой задаче каждая последующая цифра увеличивается так: десятки на один десяток и единицы на одну единицу. 12=10+2, 23=20+3, 34=30+5 и т. д.

Продолжи ряд, сохраняя закономерность.

  • 12, 36, 13, 39, 14, 42, 15,…

Решение: В числовой цепочке выделяем пары чисел. Первая пара:12 и 36. 12×3=36, далее по порядку: 13×3=39. Умножая каждый раз на 3, цифры, следующие по порядку (12,13,14,15…), мы продолжаем последовательный ряд. Ответ: 45.

Задания для 4 класса

Найди ошибку в бусах.

Решение: В первых бусах повторяются квадрат и круг, значит лишний шестой круг. Во вторых бусах, повторяется закономерность: круг, два треугольника, два круга, лишний – восьмой, по счету, круг.

Определите закономерность. Найдите лишнее число.

  • 8, 16, 20, 24, 32, 40, 48, 56, 64, 72.

Решение: В этом числовом ряду таблица умножения на 8. Ответ: число 20 – лишнее.

Каких геометрических фигур не хватает? Дорисуй их, соблюдая закономерность в таблице:

Решение: Определить, какой элемент изменился во втором и последующих рядах, можно, выделив последовательность: ромб, трапеция, шестиугольник и параллелограмм. Во втором ряду недостает шестиугольника, в третьем — ромба, в четвертом – параллелограмма и трапеции.

Систематизируйте полученные знания! Мы предлагаем более 4 000 авторских задач по основным школьным предметам! Развивайте кругозор ребенка вместе с нами! Попробовать

Тема: Закономерности в числах и фигурах

Тема: Закономерности в числах и фигурах

Всё в нашей жизни подчиняется каким-то правилам. Есть правила и в математике. Например, посмотрите на такой ряд чисел: 1, 2, 3. Числа стоят по порядку. Или такой ряд: 1, 3, 5: числа стоят через 1 число. 10, 20, 30: каждое следующее число больше предыдущего на 10. То есть при составлении какого-то последовательного ряда соблюдается какое-то правило. Это правило называется закономерность.

Закономерность – это правило, по которому что-то повторяется время от времени.

Повторяться могут изображения, буквы, числа и любые другие символы. Но обязательно в ряду должно быть не менее трёх чисел.

Например, 2, 3. Есть ли в этом ряду закономерность? Этого мы утверждать не можем. А если ряд 3, 6, 9, то какое число мы можем поставить дальше? Конечно. 12. Мы должны поставить это число по правилу данной закономерности (каждое число в ряду больше другого на 3).

В закономерности всегда не менее 3-х элементов!

На первых двух мы обычно предполагаем закономерность, а на третьем проверяем. Два элемента могут находиться рядом абсолютно случайно. А три – это уже правило.

Как находить закономерности?

1. Внимательно смотрим на ряд чисел, фигур или других картинок.

2. Если в этом ряду есть закономерность, то думаем, какая.

3. Проверяем, соблюдается ли это правило во всей последовательности чисел.

4. Вставляем числа (или фигуры), которые должны эту закономерность продолжить.

Рассмотрим пример с фигурами: В таблице размещены рожицы: квадрат, треугольник, круг. Две строки заполнены, а в третьей одна ячейка свободна. Сравним все ряды: в каждом полном ряду есть все три фигуры. Какую фигуру на надо вставить в пустую клеточку? Чего в этом ряду не хватает? Конечно, это квадрат. Мы нашли закономерность, задачу решили.

Как решать задания на закономерности, вы подробно можете посмотреть на сайте заочных школ на Методической страничке в пособии «Закономерности в цифрах и фигурах. Аналогичная закономерность». Скачайте и просмотрите. Там есть примеры аналогичных заданий.

Будьте очень внимательны при решении этих последовательностей!

КОНТРОЛЬНАЯ РАБОТА № 3 по предмету «Математическая мозаика» для 1 класса

Фамилия _______________________________ Имя __________________

Школа _______________ Класс ______________

Задание 1. Назовите следующее число в ряду:

3, 5, 7, 9, 11, …

Ответ: ________

Задание 2. Помогите коту Мурзику выбрать из предлагаемых вариантов геометрическую фигуру, которую нужно поместить в пустую клетку.

Ответ: _______________

Задание 3. Машенька — ужасная модница. У нее два ящика с красивыми косынками. В первом ящике: красная косынка, синяя косынка в белый горошек, желтая косынка в мухоморчик, красная косынка в рыбку, зеленая косынка с птичкой, зеленая косынка в мороженку. Во втором ящике: синяя косынка в белочку, красная косынка в горошек, зеленая косынка в мухоморчик. Сколько различных по цвету косынок у Машеньки? Ответ: ________

Задание 4. Определи, какую картинку надо вставить в пустую клетку.

А. Лодочка 2. Машинка 3. Ведёрко

Ответ: ________________________

Задание 5. Найдите числа, которых не хватает каждой змейке. Впишите цифры в ответе.

Ответ:

Жёлтая змейка (верхняя) — ____

Зелёная змейка (средняя) — ______

Малиновая змейка (нижняя) — _____

Задание 6. Какая фигура лишняя?

Практически каждый пятиклассник после первого знакомства с обыкновенными дробями находится в небольшом шоке. Мало того, что нужно еще понять суть дроби, так с ними еще придется выполнять арифметические действия. После этого маленькие ученики будут систематически допрашивать своего учителя, разузнавать когда же эти дроби кончатся.

Чтобы избежать подобных ситуаций, достаточно всего лишь как можно проще объяснить детям эту нелегкую тему, а лучше в игровой форме.

Суть дроби

Перед тем, как узнать что такое дробь, ребенок должен познакомиться с понятием доля. Здесь лучше всего подойдет ассоциативный метод.

Представьте целый торт, который поделили на несколько равных частей, допустим на четыре. Тогда каждый кусочек торта, можно назвать долей. Если взять один из четырех кусков торта, то он будет одной четвертой долей.

Доли бывают разные, потому что, целое можно поделить на совершенно разное количество частей. Чем больше долей в целом, тем они меньше, и наоборот.

Чтобы доли можно было обозначить, придумали такое математическое понятие, как обыкновенная дробь. Дробь позволит нам записать столько долей, сколько потребуется.

Составными частями дроби являются числитель и знаменатель, которые разделены дробной чертой либо наклонной чертой. Многие дети не понимают их смысла, поэтому и суть дроби им не понятна. Дробная черта обозначает деление, здесь нет ничего сложного.

Знаменатель принято записывать снизу, под дробной чертой или справа от накл.черты. Он показывает количество долей целого. Числитель, он записывается сверху над дробной чертой или слева от накл.черты, определяет сколько долей взяли.К примеру дробь 4/7. В данном случае 7-это знаменатель, показывает, что есть всего 7 долей, а числитель 4 указывает на то, что из семи долей взяли четыре.

Основные доли и их запись в дробях:

Помимо обыкновеной, существует еще и десятичная дробь.

Действия с дробями 5 класс

В пятом классе учатся выполнять все арифметические действия с дробями.

Все действия с дробями выполняются по правилам, и надеяться на то, что не выучив правило все получится само сабой не стоит. Поэтому не стоит пренебрегать устной частью домашнего задания по математике.

Мы уже поняли, что запись десятичной и обыкновенной дроби различны, следовательно и арифметические действия будут выполняться по-разному. Действия с обыкновенными дробями зависят от тех чисел, которые стоят в знаменателе, а в десятичной-после запятой справа.

Для дробей, у которых знаменатели одинаковые, алгоритм сложения и вычитания очень прост. Действия выполняем только с числителями.

Пример:

Для дробей с разными знаменателями нужно найти Наименьший Общий Знаменатель ( НОЗ). Это то число, которое будет делиться без остатка на все знаменатели, и будет наименьшим из таких чисел, если их несколько.

Пример:

Для сложения либо вычитания десятичных дробей, нужно записать их в столбик, запятая под запятой, и уравнить количество десятичных знаков если это требуется.

Пример:

Чтобы перемножить обыкновенные дроби просто найди произведение числителей и знаменателей. Очень простое правило.

Пример:

Деление выполняется по следующему алгоритму:

  1. Делимое записать без изменения
  2. Деление превратить в умножение
  3. Делитель перевернуть (записать обратную дробь делителю)
  4. Выполнить умножение

Пример:

Сложение дробей, объяснение

Давайте более подробно разберем, как складывать обыкновенные и десятичные дроби.

Как видно на изображении выше, у дроби одна третья и две третьих общий знаменатель три. Значит требуется сложить только числители единицу и два, а знаменатель оставить без изменения. В итоге получается сумма три третьих. Такой ответ, когда числитель и знаменатель дроби равны, можно записать как 1, так как 3:3 = 1.

Требуется найти сумму дробей две третьих и две девятых. В этом случае знаменатели различны, 3 и 9. Чтобы выполнить сложение, нужно подобрать общий. Есть очень простой способ. Выбираем наибольший знаменатель, это 9. Проверяем делится ли он на 3. Так как 9:3 = 3 без остатка, следовательно 9 подходит как общий знаменатель.

Следующим шагом находим дополнительные множители для каждого числителя. Для этого общий знаменатель 9 делим поочередно на знаменатель каждой дроби, полученные числа и будут допол. множ. Для первой дроби: 9:3 = 3, дописываем к числителю первой дроби 3. Для второй дроби: 9:9 = 1, единицу можно не дописывать, так как при умножении на нее получится то же самое число.

Теперь умножаем числители на их дополнительные множители и складываем результаты. Полученная сумма дробь восемь девятых.

Сложение десятичных дробей выполняется по тому же правилу, что и сложение натуральных чисел. В столбик, разряд записывается под разрядом. Единственное отличие в том, что в десятичных дробях нужно правильно поставить запятую в результате. Для этого дроби записываются запятая под запятой, и в сумме требуется лишь снести запятую вниз.

Найдем сумму дробей 38, 251 и 1, 56. Чтобы было удобнее выполнять действия, мы уровняли количество десятичных знаков справа, добавив 0.

Складываем дроби не обращая внимания на запятую. А в полученной сумме просто опускаем запятую вниз. Ответ: 39, 811.

Вычитание дробей, объяснение

Чтобы найти разность дробей две третьих и одна третья, нужно вычислить разность числителей 2-1 = 1, а знаменатель оставить без изменения. В ответе получаем разность одну третью.

Найдем разность дробей пять шестых и семь десятых. Находим общий знаменатель. Используем способ подбора, из 6 и 10 наибольший 10. Проверяем: 10 : 6 без остатка не делится. Добавляем еще 10, получается 20:6, тоже без остатка не делится. Снова увеличиваем на 10, получили 30:6 = 5. Общий знаменатель 30. Так же НОЗ можно найти по таблице умножения.

Находим дополнительные множители. 30:6 = 5 — для первой дроби. 30:10 = 3 — для второй. Перемножаем числители и их доп.множ. Получаем уменьшаемое 25/30 и вычитаемое 21/30. Далее выполняем вычитание числителей, а знаменатель оставляем без изменения.

В результате получилась разность 4/30. Дробь сократимая. Разделим ее на 2. В ответе 2/15.

>Деление десятичных дробей 5 класс

В этой теме рассматривается два варианта действий:

Умножение десятичных дробей 5 класс

Вспомните, как вы умножаете натуральные числа, точно таким же способом и находят произведение десятичных дробей. Сначала разберемся, как умножить десятичную дробь на натуральное число. Для этого:

При умножении десятичной дроби на десятичную, действуем точно также.

Смешанные дроби 5 класс

Пятиклашки любят называть такие дроби не смешанные, а <<смешные>>, наверное так легче запомнить. Смешанные дроби называются так от того, что они получились путем соединения целого натурального числа и обыкновенной дроби.

Смешанная дробь состоит из целой и дробной части.

При чтении таких дробей сначала называют целую часть, затем дробную: одна целая две третьих, две целых одна пятая, три целых две пятых, четыре целых три четвертых.

Как же они получаются, эти смешанные дроби? Все довольно просто. Когда мы получаем в ответе неправильную дробь ( дробь у которой числитель больше знаменателя), мы ее должны всегда переводить в смешанную. Достаточно разделить числитель на знаменатель. Это действие называется выделением целой части:

Перевести смешанную дробь обратно в неправильную тоже несложно:

Примеры с десятичными дробями 5 класс с объяснением

Много вопросов у детей вызывают примеры на несколько действий. Разберем пару таких примеров.

Пример 1.

( 0,4 · 8,25 — 2,025 ) : 0,5 =

Первым действием находим произведение чисел 8,25 и 0,4. Выполняем умножение по правилу. В ответе отсчитываем справа налево три знака и ставим запятую.

Второе действие находится там же в скобках, это разность. От 3,300 вычитаем 2,025. Записываем действие в столбик, запятая под запятой.

Третье действие-деление. Полученную разность во втором действии делим на 0,5. Запятая переносится на один знак. Результат 2,55.

Ответ: 2,55.

Пример 2.

( 0, 93 + 0, 07 ) : ( 0, 93 — 0, 805 ) =

Первое действие сумма в скобках.Складываем в столбик, помним, что запятая под запятой. Получаем ответ 1,00.

Второе действие разность из второй скобки. Так как у уменьшаемого меньше знаков после запятой, чем у вычитаемого, добавляем недостающий. Результат вычитания 0 ,125.

Третьим действие делим сумму на разность. Запятая переносится на три знака. Получилось деление 1000 на 125.

Ответ: 8.

Примеры с обыкновенными дробями с разными знаменателями 5 класс с объяснением

В первом примере находим сумму дробей 5/8 и 3/7. Общим знаменателем будет число 56. Находим дополнительные множ., разделим 56:8 = 7 и 56:7 = 8. Дописываем их к первой и второй дроби соответственно. Перемножаем числители и их множители, получаем сумму дробей 35/56 и 24/56. Получили сумму 59/56. Дробь неправильная, переводим ее в смешанное число.Остальные примеры решаются аналогично.

>Примеры с дробями 5 класс для тренировки

Для удобства переведите смешанные дроби в неправильные и выполняйте действия.

Как научить ребенка легко решать дроби с помощью лего

С помощью такого конструктора можно не только хорошо развивать воображение ребенка, но и объяснить наглядно в игровой форме, что такое доля и дробь.

На картинке ниже показано, что одна часть с восемью кружками это целое. Значит, взяв пазл с четырьмя кружками, получается половина, или 1/2. На картинке наглядно показано, как решать примеры с лего, если считать кружки на деталях.

Вы можете построить башенки из определенного количества частей и подписать каждую из них, как на картинке ниже. Например возьмем башенку из семи частей. Каждая часть зеленого конструктора будет 1/7. Если вы к одной такой части добавите еще две, то получится 3/7. Наглядное объяснение примера 1/7+2/7 = 3/7.

Чтобы получать пятерки по математике не забывайте учить правила и отрабатывать их на практике.

Как доходчиво объяснить ребенку обыкновенные дроби?

Сначала объясните ребенку, что за слово»дробь». Это слово произошло от слова «дробить»,взять целый предмет и раздробить его на мелкие части, например, мы возьмем целый орешек и расколотим его на мелкие части. Так же, бывает и с другими предметами, например, одно целое яблоко поделить между двумя друзьями, или целый торт разрезать для гостей и т.д. В математике, с помощью цифр это можно записать.

Дальше, лучше всего объяснять на наглядных примерах.На примере того же яблока. Разрежем яблоко на две равные половинки. Одну дольку я отдам тебе. Ты получил одну половинку из этих двух долек. Записывается это так :одна долька , пишем 1 , из двух долек, пишем цифру 2 под цифрой 1, между ними перекладинка (черточка)- 1/2. Давай ещё раз посмотрим, что у нас получилось. Закрепляете с ребенком, где какая цифра пишется. Над чертой цифра показывает сколько долек яблока тебе дали (1), под чертой на сколько частей поделили это яблоко (2). В математике, верхнее число называется числителем, а нижнее знаменателем. А если мы разрежем целое яблоко на 4 равные части? Дадим тебе одну дольку яблока. Как запишем это при помощи цифр? Рассуждаем так же как с первым яблоком. Что пишем в числителе? (1). Сразу закрепляйте с ребенком: что это число обозначает ( сколько долек ты взял). Что в знаменателе (на сколько частей разделили яблоко) (4). Получилась дробь- 1\4. А если дадим тебе две дольки яблока. Как запишем эту дробь? (2/4). Не спеша, таким образом, на других примерах (разрезали торт, пиццу ), закрепляете как образуются обыкновенные дроби.

Затем можно переходить к сложению и вычитанию обыкновенных дробей.

Успехов!