Как от числа отнять дробь

Вычитание смешанных дробей с одинаковыми знаменателями.

Рассмотрим пример с условием, что уменьшаемое целое и дробная часть больше соответственно вычитаемого целой и дробной части. При таких условиях вычитание происходит отдельно. Целую часть вычитаем из целой части, а дробную часть из дробной.

Рассмотрим пример:

Выполните вычитание смешанных дробей \(5\frac{3}{7}\) и \(1\frac{1}{7}\).

\(5\frac{3}{7}-1\frac{1}{7} = (5-1) + (\frac{3}{7}-\frac{1}{7}) = 4\frac{2}{7}\)

Правильность вычитания проверяется сложением. Сделаем проверку вычитания:

\(4\frac{2}{7}+1\frac{1}{7} = (4 + 1) + (\frac{2}{7} + \frac{1}{7}) = 5\frac{3}{7}\)

Рассмотрим пример с условием, когда дробная часть уменьшаемого меньше соответственно дробной части вычитаемого. В таком случае мы занимаем единицу у целого в уменьшаемом.

Рассмотрим пример:

Выполните вычитание смешанных дробей \(6\frac{1}{4}\) и \(3\frac{3}{4}\).

У уменьшаемого \(6\frac{1}{4}\) дробная часть меньше чем у дробной части вычитаемого \(3\frac{3}{4}\). То есть \(\frac{1}{4} < \frac{1}{3}\), поэтому сразу отнять мы не сможем. Займем у целой части у 6 единицу, а потом выполним вычитание. Единицу мы запишем как \(\frac{4}{4} = 1\)

\(\begin{align}&6\frac{1}{4}-3\frac{3}{4} = (6 + \frac{1}{4})-3\frac{3}{4} = (5 + \color{red} {1} + \frac{1}{4})-3\frac{3}{4} = (5 + \color{red} {\frac{4}{4}} + \frac{1}{4})-3\frac{3}{4} = (5 + \frac{5}{4})-3\frac{3}{4} = \\\\ &= 5\frac{5}{4}-3\frac{3}{4} = 2\frac{2}{4} = 2\frac{1}{4}\\\\ \end{align}\)

Следующий пример:

\(7\frac{8}{19}-3 = 4\frac{8}{19}\)

Вычитание смешанных дробей с разными знаменателями.

Рассмотрим пример с условием, если дробные части уменьшаемого и вычитаемого с разными знаменателями. Нужно привести к общему знаменателю, а потом выполнить вычитание.

Выполните вычитание двух смешанных дробей с разными знаменателями \(2\frac{2}{3}\) и \(1\frac{1}{4}\).

Общим знаменателем будет число 12.

\(2\frac{2}{3}-1\frac{1}{4} = 2\frac{2 \times \color{red} {4}}{3 \times \color{red} {4}}-1\frac{1 \times \color{red} {3}}{4 \times \color{red} {3}} = 2\frac{8}{12}-1\frac{3}{12} = 1\frac{5}{12}\)

Вопросы по теме:
Как вычитать смешанные дроби? Как решать смешанные дроби?
Ответ: нужно определиться к какому типу относиться выражение и по типу выражения применять алгоритм решения. Из целой части вычитаем целое, у дробной части вычитаем дробную часть.

Как из целого числа вычесть дробь? Как от целого числа отнять дробь?
Ответ: у целого числа нужно занять единицу и записать эту единицу в виде дроби

\(4 = 3 + 1 = 3 + \frac{7}{7} = 3\frac{7}{7}\),

а потом целое отнять от целого, дробную часть отнять от дробной части. Пример:

\(4-2\frac{3}{7} = (3 + \color{red} {1})-2\frac{3}{7} = (3 + \color{red} {\frac{7}{7}})-2\frac{3}{7} = 3\frac{7}{7}-2\frac{3}{7} = 1\frac{4}{7}\)

Пример №1:
Выполните вычитание правильной дроби из единицы: а) \(1-\frac{8}{33}\) б) \(1-\frac{6}{7}\)

Решение:
а) Представим единицу как дробь со знаменателем 33. Получим \(1 = \frac{33}{33}\)

\(1-\frac{8}{33} = \frac{33}{33}-\frac{8}{33} = \frac{25}{33}\)

б) Представим единицу как дробь со знаменателем 7. Получим \(1 = \frac{7}{7}\)

\(1-\frac{6}{7} = \frac{7}{7}-\frac{6}{7} = \frac{7-6}{7} = \frac{1}{7}\)

Пример №2:
Выполните вычитание смешанной дроби из целого числа: а) \(21-10\frac{4}{5}\) б) \(2-1\frac{1}{3}\)

Решение:
а) Займем у целого числа 21 единицу и распишем так \(21 = 20 + 1 = 20 + \frac{5}{5} = 20\frac{5}{5}\)

\(21-10\frac{4}{5} = (20 + 1)-10\frac{4}{5} = (20 + \frac{5}{5})-10\frac{4}{5} = 20\frac{5}{5}-10\frac{4}{5} = 10\frac{1}{5}\\\\\)

б) Займем у целого числа 2 единицу и распишем так \(2 = 1 + 1 = 1 + \frac{3}{3} = 1\frac{3}{3}\)

\(2-1\frac{1}{3} = (1 + 1)-1\frac{1}{3} = (1 + \frac{3}{3})-1\frac{1}{3} = 1\frac{3}{3}-1\frac{1}{3} = \frac{2}{3}\\\\\)

Пример №3:
Выполните вычитание целого числа из смешанной дроби: а) \(15\frac{6}{17}-4\) б) \(23\frac{1}{2}-12\)

а) \(15\frac{6}{17}-4 = 11\frac{6}{17}\)

б) \(23\frac{1}{2}-12 = 11\frac{1}{2}\)

Пример № 4:
Выполните вычитание правильной дроби из смешанной дроби: а) \(1\frac{4}{5}-\frac{4}{5}\)

>Дроби. Вычитание дробей.

Вычитание смешанных дробей.

При вычитании смешанных дробей (чисел) отдельно из целой части вычитают целую часть, а из дробной части вычитают дробную часть.

Первый вариант вычитания смешанных дробей.

Если у дробных частей одинаковые знаменатели и числитель дробной части уменьшаемого (из него вычитаем) ≥ числителю дробной части вычитаемого (его вычитаем).

Например:

Второй вариант вычитания смешанных дробей.

Когда у дробных частей разные знаменатели. Для начала приводим к общему знаменателю дробные части, а после этого выполняем вычитание целой части из целой, а дробной из дробной.

Например:

Третий вариант вычитания смешанных дробей.

Дробная часть уменьшаемого меньше дробной части вычитаемого.

Пример:

Т.к. у дробных частей разные знаменатели, значит, как и при втором варианте, сначала приводим обыкновенные дроби к общему знаменателю.

Числитель дробной части уменьшаемого меньше числителя дробной части вычитаемого. 3 < 14. Значит, занимаем единицу из целой части и приводим эту единицу к виду неправильной дроби с одинаковым знаменателем и числителем = 18.

Складываем неправильную дробь 18/18, которую мы получили и дробную часть уменьшаемого и получаем:

Итог – общая схема вычислений:

  • Если есть целая часть, переводиме эти дроби в неправильные;
  • Приводим все дроби к общему знаменателю любым способом;
  • Вычитаем найденные числа по правилу вычитания дробей с одинаковыми знаменателями;
  • Если есть возможность, сокращаем полученную дробь. Если дробь получилась неправильной, выделяем целую часть.
  • Запомните, что выделяем целую часть предпочтительно в конце выполнения задания, именно перед записью ответа. Так легче не запутаться.

Общий вариант. Вычитание дробных выражений.

Предположим, есть такое задание:

Приводим к общему знаменателю. При помощи умножения. Поэтому мы не можем в первой дроби в знаменателе к иксу прибавить единицу. Зато можно перемножить знаменатели.

Скобки не открываем! Для того, чтобы в первой дроби получился знаменатель х(х+1), необходимо числитель и знаменатель домножить на (х+1). А во второй дроби – на х. Результат:

Обратите внимание! У нас появились скобки! Здесь нужно быть очень внимательным. Скобки появляются из-за того, что умножается весь числитель и весь знаменатель.

Калькулятор дробей онлайн. Сложение, вычитание, умножение, деление дробей.

Калькулятор десятичных дробей онлайн. Перевод десятичных дробей в обычные и обычных в десятичные.

В числителе от правой части пишем сумму числителей, дальше раскрываем скобки в числителе от правой части, то есть умножаем все и приводим подобные. В знаменателе скобки не раскрываем. В знаменателях принято оставлять произведение. Получаем:

В данной статье рассмотрим правила, согласно которым выполняется действие вычитания смешанных чисел. Разберем конкретные примеры и некоторые нюансы при их решении. Изучим вычитание обыкновенной дроби и натурального числа из смешанного числа, а также — вычитание смешанного числа из дроби и натурального числа. Рассматривать вычитание мы будем при условии вычитания из большего числа меньшее.

Yandex.RTB R-A-339285-1

Вычитание смешанных чисел

Пусть в качестве исходных данных даны два смешанных числа: abc и def , необходимо выполнить вычитание данных смешанных чисел.

Нам известно, что любое смешанное число возможно представить, как сумму его целой и дробной части, тогда получим:

abc-def=a+bc-d+ef

Свойства действий сложения и вычитания дают возможность выполнить вычисление полученного выражения различными способами. Опираясь на значения дробных частей смешанных чисел

abc и def , необходимо придерживаться следующих схем вычисления:

  • если дробная часть уменьшаемого больше, чем дробная часть вычитаемого:

bc>ef, то вычитание оптимально будет произвести так:

abc-def=(a-d)+bc-ef

Пример 1

Произвести вычитание смешанных чисел: 356-249 .

Решение

Сравним дробные части смешанных чисел, т.е. 56 и 49 . Чтобы определить, какая из дробей больше, приведем их к общему наименьшем знаменателю или наименьшему общему кратному: НОК (6, 9) = 18. При этом дополнительным множителем для дроби 56 станет 18 : 6 = 3; а для дроби 49 – 18 : 9 = 2, поэтому : 56=5·36·3=1518 и 49=4·29·2=818 .

Оценим полученный результат: 1518>818, что означает 56>49. Т.е. дробная часть уменьшаемого больше дробной части вычитаемого, и тогда действие вычитания производится путем раздельного вычитания целых и дробных частей заданных смешанных чисел:

3-2=156-49=1518-818=15-818=718

Т.е.: (3-2)+56-49=1+718=1718

Ответ: 356-249=1718

  • если дробные части заданных смешанных чисел равны: bc=ef , а, соответственно разность их равна нулю, то результатом вычитания таких смешанных чисел будет разность их целых частей:

abc-def=(a-d)+bc-ef=a-d+0=a-d

Пример 2

Произвести вычитание смешанных чисел 15710 и 2710 .

Решение

Мы видим, что дробные части заданных чисел равны, т.е. их разность есть нуль. Таким образом, действие вычитания заданных чисел сводится к нахождению разности их целых частей: 15710-2710=15+710-2+710=15-2+710-710=15-2+0=13

Ответ: 15710-2710=13

  • если дробная часть уменьшаемого меньше дробной части вычитаемого: bc<ef , то действие вычитания оптимально произвести так:

abc-def=a-d-ef+bc

Пример 3

Произвести вычитание смешанных чисел: 2625-81415 .

Решение

Проведем сравнение дробных частей заданных чисел, определив для начала наименьший общий знаменатель: НОК (5, 15) = 15, тогда 25=2·35·3=615 .

Следовательно: 615<1415, т.е. дробная часть уменьшаемого меньше дробной части вычитаемого. Таким образом, находить разность заданных смешанных чисел будем так: 2625-81415=26615-81415=26+615-8+1415==26-8-1415+615=18-1415+615

Для начала вычтем дробь из натурального числа (в скобках): 18-1415=(17+1)-1415=17+1+1415=17+11+1415==17+1515-1415=17+115

Тогда 18-1415+615=17+115+615=17+115+615==17+715=17715

Ответ: 2625-81415=17715 .

Вычитание обыкновенной дроби из смешанного числа

Схема вычитания правильной дроби из смешанного числа такая же, как при действии вычитания смешанных чисел.

Пример 4

Найти разницу: 356-415

Решение:

Приведем дробные части заданных чисел к единому наименьшему общему кратному: НОК (6, 15) = 30, тогда 65=5·56·5=2530 и 415=4·215·2=830 .

Таким образом, 56>415 .

В итоге вычитание возможно произвести так: 356-415=3+56-415=3+56-415=3+2530-830=3+1730=31730

Ответ: 356-415=31730

Пример 5

Произвести действие вычитания: 127-37

Решение

Дробные части исходных чисел имеют одинаковый знаменатель, что дает возможность их легко сравнить. Понятно, что 27 меньше, чем 37.

Тогда находить разницу будем так:

127-37=1+27-37=1-37+27=11-37+27==77-37+27=47+27=67

Ответ: 127-37=67.

Добавим еще одну, в общем очевидную деталь вычислений: если дробная часть смешанного числа равна вычитаемой дроби, то итогом вычисления будет число, равное целой части уменьшаемого смешанного числа. К примеру:

16311-311=16+311-311=16+311-311=16+0=16

Чтобы вычесть неправильную дробь из смешанного числа, необходимо выделить целую часть из неправильной дроби, а затем производить вычисление.

Пример 6

Вычислить значение разности: 7512-199 .

Решение: вычитаемая дробь является неправильной, выделим из нее целую часть и получим: 199=219

Приведем к общему знаменателю дробные части заданных чисел и согласно указанным выше схемам произведем вычитание смешанных чисел:

7512-219=7+512-2+19=7-2+512-19==5+1536-436=5+1136=51136

Ответ: 7512-199=51136 .