Как найти высоту трапеции

1 Найти высоту произвольной трапеции

Базируясь на исходных данных, определение высоты фигуры возможно несколькими способами.

Известна площадь

Если длина параллельных сторон известна, а также указана площадь фигуры, то для определения искомого перпендикуляра можно воспользоваться следующим соотношением:

S=h*(a+b)/2,
h – искомая величина (высота),
S – площадь фигуры,
a и b – стороны, параллельные друг другу.
Из приведенной формулы следует, что h=2S/(a+b).

Известна величина средней линии

Если среди исходных данных помимо площади трапеции (S) известна, и длина ее линии средины (l), то для вычислений пригодится другая формула. Прежде стоит уточнить, что такое средняя линия для данного вида четырехугольника. Термин определяет часть прямой, соединяющей средины боковых сторон фигуры.

Исходя из свойства трапеции l=(a+b)/2,
l – линия средины,
a, b – стороны-основания четырехугольника.
Поэтому h=2S/(a+b)=S/l.

Известны 4 стороны фигуры

В данном случае поможет теорема Пифагора. Опустив перпендикуляры на большую сторону-основание, воспользуйтесь ею для двух получившихся прямоугольных треугольников. Итоговое выражение будет иметь вид:

h=√c2-(((a-b)2+c2-d2)/2(a-b) )2,

a и b – стороны-основания фигуры,
c и d – 2 другие стороны.

Углы в основании

При наличии данных об углах при основании, воспользуйтесь тригонометрическими функциями.

h = c* sinα = d*sinβ,

α и β – углы в основании четырехугольника,
c и d – его боковые стороны.

Диагонали фигуры и углы, которые пересекаясь они образуют

Длина диагонали – длина отрезка, соединяющего противоположные вершины фигуры. Обозначим данные величины символами d1 и d2, а углы между ними γ и φ. Тогда:

h = (d1*d2)/(a+b) sin γ = (d1*d2)/(a+b) sinφ,

h = (d1*d2)/2l sin γ = (d1*d2)/2l sinφ,

a и b – стороны-основания фигуры,
d1 и d2 – диагонали трапеции,
γ и φ – углы между диагоналями.

Высота фигуры и радиус окружности, которая в нее вписана

Как следует из определения такого рода окружности, она касается каждого основания в 1 точке, которые являются частью одной прямой. Поэтому расстояние между ними – диаметр – искомая высота фигуры. А так как диаметр – удвоенный радиус, то:

h = 2 * r,
r – радиус окружности, которую вписали в данную трапецию.

2 Найти высоту равнобедренной трапеции

  • Как и следует из формулировки, отличительной характеристикой равнобедренной трапеции является равенство ее боковых сторон. Поэтому для нахождения высоты фигуры воспользуйтесь формулой для определения данной величины в случае, когда известны стороны трапеции.

Итак, если с = d, то h=√c2-(((a-b)2+c2-d2)/2(a-b) )2 = √c2-(a-b)2/4,
a, b – стороны-основания четырехугольника,
c = d – его боковые стороны.

  • При наличии величины углов, образованных двумя сторонами (основанием и боковой), высоту трапеции определяет следующее соотношение:

Как найти высоту трапеции?

  • Думаю, что высоту трапеции найти легче лгкого, для этого достаточно уметь находить катет прямоугольного треугольника. Ну а уж эту тайну я раскрывать не буду, е достаточно точно описал в сво время товарищ Пифагор)))

  • Чтобы найти высоту трапеции, необходимо воспользоваться математической формулой h = 2S/(a+b), здесь S является площадью трапеции, а вот a и b — основания трапеции. Умножаем площадь на два и делим на сумму оснований.

  • Формулу высоты трапеции можно найти несколькими способами, исходя из имеющихся по условию данных.

    Один из способов — через площадь.

    где S, естественно, площадь трапеции,

    a. b — основания,

    h — высота трапеции,

    m — средняя линия.

  • Формул для расчета высоты трапеции очень много:

    Здесь обозначено:

    h — непосредственно высота;

    a, b, c, d — стороны трапеции;

    d1, d2 — две диагонали трапеции

    m — срединная линия.

    Так же на рисунке ниже смотрите где угол и :

  • Равнобедренная трапеция — это трапеция с равными бедрами и углами при нижнем оснавании, высоту такой трапеции можно найти как произведение боковой стороны на синус угла при нижнем оснавании либо как произведение полуразности оснаваний на тангенс угла при нижнем оснавании.

  • Высоту трапеции можно найти, используя исходные данные. Если известна площадь трапеции и ее основания, то высота трапеции равна h = 2S/(a+b), где S — площадь, a и b — основания.

    Можно найти высоту трапеции по теореме Пифагора, если известны все стороны трапеции, а сама трапеция равнобедренная. В этом случае находим сначала основание треугольника, которое будет равно половине разности оснований, а затем применить теорему Пифагора.

    Если известны площадь трапеции и средняя линия, то для определения высоты трапеции достаточно разделить площадь трапеции на длину средней линии.

  • Высоту трапеции можно найти из прямоугольного треугольника, который образуется боковой стороной трапеции АВ — гипотенуза прямоугольного треугольника, самой высотой трапеции BH — один из катетов и частью основания трапеции, которая равна половине разницы между двумя основаниями трапеции AH = (AD-BC)/ 2 — это второй катет. Ну а в прямоугольном треугольнике катет равен корню квадратному из разницы квадрата гипотенузы и квадрата второго катета.

    Эту задачу можно решить разными способами, смотря что известно в трапеции: стороны или углы. Ну а вообще-то это школьный курс математики. )))

  • Трапецией называют такой четырехугольник, у которого две противоположные стороны являются параллельными, а две оставшиеся — нет. Те стороны, которые параллельны друг другу называются основаниями.

    Площадь любой трапеции равна произведению полусуммы ее оснований на высоту. Если это выразить в виде формулы, то получится следующее:

    S=1/2h x(a+b)

    h — это высота трапеции,

    a и b — это ее основания.

  • Геометрия — точная и занимательная наука.

    И для любителей геометрии не составит труда найти высоту трапеции.

    Что же такое трапеция?

    Трапеция — это такой прямоугольник, у которого две стороны противоположные параллельны между собой, а вот две другие стороны не параллельны между собой.

    Вот представлен чертеж трапеции: