Как начертить изометрию детали

Выполнение прямоугольной изометрии, прямоугольной диметрии по заданным видам

Построение третьего вида по двум заданным

При построение вида слева, представляющего собой симметричную фигуру, за базу отсчета размеров проецируемых элементов детали берут плоскость симметрии, изображая её осевой линией.

Рис. 11.11.

Названия видов на чертежах, выполненных в проекционной связи, не указываются.

Построение аксонометрических проекций

Для наглядных изображений предметов, изделий и их составных частей единой системы конструкторской документации (ГОСТ 2.317-69) рекомендуется применять пять видов аксонометрических проекций: прямоугольные – изометрическую и диметрическую проекции, косоугольные – фронтальную изометрическую, горизонтальную изометрическую и фронтальную диметрическую проекции.

По ортогональным проекциям любого предмета всегда можно построить его аксонометрическое изображение. При аксонометрических построениях используются геометрические свойства плоских фигур, особенности пространственных форм геометрических тел и расположение их относительно плоскостей проекций.

Общий порядок построения аксонометрических проекций следующий:

1. Выбирают оси координат ортогональной проекции детали;

2. Строят оси аксонометрической проекции;

3. Строят аксонометрическое изображение основной формы детали;

4. Строят аксонометрическое изображение всех элементов, определяющих действительную форму данной детали;

5. Строят вырез части данной детали;

6. Проставляют размеры.

Прямоугольная геометрическая проекция

Положение оси в прямоугольной изометрической проекции приведено на рис. 17.12. Действительные коэффициенты искажения по осям равны 0,82. В практике пользуются приведенными коэффициентами, равными 1. При этом изображения получаются увеличенными в 1,22 раза.

Рис. 11.12

Способы построения осей изометрии

Направление аксонометрических осей в изометрии можно получить несколькими способами (см. рис. 11.13).

Рис. 11.13

Первый способ – с помощью угольника в 30°;

Второй способ – разделить циркулем окружность произвольного радиуса на 6 частей; прямая О1 – ось ох, прямая О2 – ось оy.

Третий способ – построить отношение частей 3/5; по горизонтальной линии отложить пять частей (получим точку М) и вниз три части (получим точку К). Полученную точку К соединить с центром О. ÐКОМ равен 30°.

Способы построения плоских фигур в изометрии

Для того, чтобы правильно построить изометрическое изображение пространственных фигур необходимо уметь строить изометрию плоских фигур. Для построения изометрических изображений надо выполнить следующие действия.

1. Дать соответствующее направление осям ох и оу в изометрии (30°).

2. Отложить на осях ох и оу натуральные (в изометрии) или сокращенные по осям (в диметрии – по оси оу) величины отрезков (координаты вершин точек.

3. Полученные точки соединить.

Так как построение производится по приведенным коэффициентам искажения, то изображение получается с увеличением:

для изометрии – в 1,22 раза;

ход построения дан на рис 11.14.

На рис. 11.14а даны ортогональные проекции трех плоских фигур – шестиугольника, треугольника, пятиугольника. На рис. 11.14б построены изометрические проекции этих фигур в разных аксонометрических плоскостях – хоу, уоz.

Рис. 11.14.

Построение окружности в прямоугольной изометрии

В прямоугольной изометрии эллипсы, изображающие окружность диаметра d в плоскостях хоу, хоz, yoz, одинаковы (рис. 11.15). Причем большая ось каждого эллипса всегда перпендикулярна той координатной оси, которая отсутствует в плоскости изображаемой окружности. Большая ось эллипса АВ = 1,22d, малая ось CD = 0.71d.

При построении эллипсов через их центры проводят направления большой и малой осей, на которых соответственно откладывают отрезки АВ и СD и прямые, параллельные осям аксонометрии, на которых откладывают отрезки MN, равные диаметру изображаемой окружности. Полученные 8 точек соединяют по лекалу.

Рис.11.15

В техническом черчении при построении аксонометрических проекций окружностей эллипсы допускается заменять овалами. На рис. 11.15 показано построение овала без определения большой и малой осей эллипса.

Рис. 11.16

Построение прямоугольной изометрической проекции детали, заданной ортогональными проекциями, производиться в следующем порядке.

1. На ортогональных проекциях выбирают оси координат, как показано на рис. 11.17.

Рис. 11.17

2. Строят ось координат x, y, z в изометрической проекции (рис. 11.18)

Рис. 11.18

3. Строят параллелепипед – основание детали. Для этого от начала координат по оси х откладывают отрезки ОА и ОВ, соответственно равные отрезкам о1а1 и о1b1 на горизонтальной проекции детали (рис. 11.17) и получают точки А и В.

Через точки А и В проводят прямые, параллельные оси y, и откладывают отрезки, равные половине ширины параллелепипеда. Получают точки D, C, J, V, которые являются изометрическими проекциями вершин нижнего прямоугольника. Точки С и V, D и J соединяют прямыми, параллельными оси х.

От начала координат О по оси z откладывают отрезок ОО1, равный высоте параллелепипеда О2О2¢, через точку О1 проводят оси х1, у1 и строят изометрическую проекцию верхнего прямоугольника. Вершины прямоугольника соединяют прямыми, параллельными оси z.

4. строят аксонометрическое изображение цилиндра диаметра D. По оси z от О1 откладывают отрезок О1О2, равный отрезку О2О22, т.е. высоте цилиндра, получая точку О2 и проводят оси х2, у2. Верхнее и нижнее основания цилиндра являются окружностями, расположенными в горизонтальных плоскостях х1О1у1 и х2О2у2. Строят изометрическую проекцию аналогично построению овала в плоскости хОу (см. рис. 11.18). Проводят очерковые образующие цилиндра касательными к обоим эллипсам (параллельно оси z). Построение эллипсов для цилиндрического отверстия диаметром d выполняется аналогично.

5. Строят изометрическое изображение ребра жесткости. От точки О1 по оси х1 откладывают отрезок О1Е, равный ое. Через точку Е проводят прямую параллельную оси у и откладываю в обе стороны отрезок, равный половине ширины ребра (еk и ef). Получают точки К и F. Из точек К, E, F проводят прямые, параллельные оси х1 до встречи с эллипсом (точки P, N, M). Проводят прямые, параллельные оси z (линии пересечения плоскостей ребра с поверхность цилиндра), и на них откладывают отрезки PТ, MQ и NS, равные отрезкам р3t3, m3q3, n3s3. Точки Q, S, T соединяют и обводят по лекалу, от точки K, T и F, Q соединяют прямыми.

6. Строят вырез части заданной детали.

Проводят две секущие плоскости: одну через оси z и x, а другую – через оси z и y. Первая секущая плоскость разрежет нижний прямоугольник параллелепипеда по оси х (отрезок ОА), верхний – по оси х1, ребро – по линии EN и ES, цилиндры диаметрами D и d – по образующим, верхнее основание цилиндра по оси х2. Аналогично вторая секущая плоскость разрежет верхний и нижний прямоугольник по осям у и у1, а цилиндры — по образующим и верхнее основание цилиндра – по оси у2. Плоскости, полученные от сечения, заштриховываются. Для того, чтобы определить направление линий штриховки, необходимо на аксонометрических осях, проведенных радом с изображением (рис. 11.19) отложить от начала координат равные отрезки О1, О2, О3, концы этих отрезков соединить. Линии штриховки сечений, расположенном в плоскости хОz, наносить параллельно отрезку I2, для сечения, лежащего в плоскости zОу – параллельно отрезку 23.

Рис. 11.19

Удаляют все невидимые линии и линии построения и обводят контурные линии.

7. Проставляют размеры.

Для нанесения размеров выносные и размерные линии проводят параллельно аксонометрическим осям.

Прямоугольная диметрическая проекция

Построение координатных осей для диметрической прямоугольной проекции показано на рис. 11.20.

Рис. 11.20

Для диметрической прямоугольно проекции коэффициенты искажения по осям х и z равны0,94, по оси у – 0,47. В практике пользуются приведенными коэффициентами искажения: по осям х и z приведенный коэффициент искажения равен 1, по оси у – 0,5. При этом изображение получается в 1,06 раза.

Способы построения плоских фигур в диметрии

Для того, чтобы правильно построить диметрическое изображение пространственной фигуры, надо выполнить следующие действия:

1. Дать соответствующее направление осям ох и оу, в диметрии (7°10¢; 41°25¢).

2. Отложить по осям х, z натуральные, а по оси у сокращенные согласно коэффициентам искажения величины отрезков (координаты вершин точек).

3. Полученные точки соединить.

Ход построения дан на рис. 11.21. На рис. 11.21а даны ортогональные проекции трех плоских фигур. На рис 11.21б построение диметричеких проекций этих фигур в разных аксонометрических плоскостях – хоу; уоz/

Рис. 11.21

Построение окружности прямоугольной диметрии

Аксонометрическая проекция окружности представляет собой эллипс. Направление большой и малой оси каждого эллипса указано на рис. 11.22. Для плоскостей, параллельных горизонтальной (хоу) и профильной (уоz) плоскостям, величина большой оси равна 1,06d, малой – 0,35d.

Для плоскостей, параллельных фронтальной плоскости хоz, величина большой оси равна 1,06d, а малой – 0,95d.

Рис. 11.22

В техническом черчении при построении окружности эллипсы допускается заменить овалами. На рис. 11.23 показано построение овала без определения большой и малой осей эллипса.

Рис. 11.23

Черчение

Для выполнения изометрической проекции любой детали не­обходимо знать правила построения изометрических проекций плоских и объемных геометрических фигур.

Правила построения изометрических проекций геометриче­ских фигур. Построение любой плоской фигуры следует начи­нать с проведения осей изометрических проекций.

При построении изометрической проекции квадрата (рис. 109) из точки О по аксонометрическим осям откладывают в обе сто­роны половину длины стороны квадрата. Через полученные за­сечки проводят прямые, параллельные осям.

При построении изометрической проекции треугольника (рис. 110) по оси X от точки 0 в обе стороны откладывают отрезки, равные половине стороны треугольника. По оси У от точки О откладывают высоту треугольника. Соединяют полученные за­сечки отрезками прямых.

Рис. 109. Прямоугольная и изометрические проекции квадрата

Рис. 110. Прямоугольная и изометрические проекции треугольника

При построении изометрической проекции шестиугольника (рис. 111) из точки О по одной из осей откладывают (в обе сторо­ны) радиус описанной окружности, а по другой — H/2. Через полученные засечки проводят прямые, параллельные одной из осей, и на них откладывают длину стороны шестиугольника. Со­единяют полученные засечки отрезками прямых.

Рис. 111. Прямоугольная и изометрические проекции шестиугольника

Рис. 112. Прямоугольная и изометрические проекции круга

При построении изометрической проекции круга (рис. 112) из точки О по осям координат откладывают отрезки, равные его радиусу. Через полученные засечки проводят прямые, парал­лельные осям, получая аксонометрическую проекцию квадрата. Из вершин 1, 3 проводят дуги CD и KL радиусом 3С. Соединяют точки 2 с 4, 3 с С и 3 с D. В пересечениях прямых получаются центры а и б малых дуг, проведя которые получают овал, заме­няющий аксонометрическую проекцию круга.

Используя описанные построения, можно выполнить аксоно­метрические проекции простых геометрических тел (табл. 10).

10. Изометрические проекции простых геометрических тел

Способы построения изометрической проекции детали:

1. Способ построения изометрической проекции детали от формообразующей грани используется для деталей, форма кото­рых имеет плоскую грань, называемую формообразующей; ши­рина (толщина) детали на всем протяжении одинакова, на боко­вых поверхностях отсутствуют пазы, отверстия и другие элемен­ты. Последовательность построения изометрической проекции заключается в следующем:

1) построение осей изометрической проекции;

2) построение изометрической проекции формообразующей грани;

3) построение проекций остальных граней посредством изо­бражения ребер модели;

Рис. 113. Построение изометрической проекции детали, начиная от фор­мообразующей грани

4) обводка изометрической проекции (рис. 113).

  1. Способ построения изометрической проекции на основе по­следовательного удаления объемов используется в тех случаях, когда отображаемая форма получена в результате удаления из исходной формы каких-либо объемов (рис. 114).
  2. Способ построения изометрической проекции на основе по­следовательного приращения (добавления) объемов применяется для выполнения изометрического изображения детали, форма которой получена из нескольких объемов, соединенных опреде­ленным образом друг с другом (рис. 115).
  3. Комбинированный способ построения изометрической про­екции. Изометрическую проекцию детали, форма которой полу­чена в результате сочетания различных способов формообразо­вания, выполняют, используя комбинированный способ построе­ния (рис. 116).

Аксонометрическую проекцию детали можно выполнять с изображением (рис. 117, а) и без изображения (рис. 117, б) неви­димых частей формы.

Рис. 114. Построение изометрической проекции детали на основе последовательного удаления объемов

Рис. 115 Построение изометрической проекции детали на основе последовательного приращения объемов

Рис. 116. Использование комбинированного способа построения изометрической проекции детали

Рис. 117. Варианты изображения изометрических проекций детали: а — с изображением невидимых частей;
б — без изображения невидимых частей