Абсцисса точки касания

Продолжаем рассматривать задачи входящие в состав экзамена по математике. В курсе алгебры есть группа задач, где задаётся уравнение функции и уравнение прямой — касательной к графику данной функции или прямой параллельной этой касательной.

Задачи несложные, но они требуют чёткого понимания геометрического смысла производной. Это теоретическая основа для решения подобных задач (и подобных им), и без этой основы никак нельзя. Рекомендую ознакомиться со статьями «Геометричесий смысл произвоной. Часть 1» и «Геометрический смысл производной. Часть 2».

Рассмотрим две задачи:

Прямая у = 4х + 8 параллельна касательной к графику функции

у = х2 – 5х + 7

Найдите абсциссу точки касания.

Из геометрического смысла производной мы знаем, что значение производной в точке касания равно угловому коэффициенту касательной.

Известно, что угловые коэффициенты параллельных прямых равны, значит угловые коэффициенты прямой у = 4х + 8 и касательной равны 4.

Угловой коэффициент прямой вида у = kх + b это число k.

Таким образом, абсцисса точки касания находится из уравнения:

Значит,

Ответ: 4,5

Второй способ:

Он предельно прост, но не всегда работает. Строим на координатной плоскости график у = х2 – 5х + 7, строим прямую у = 4х + 8, далее строим (параллельным переносом) параллельную ей прямую касающуюся параболы, и в некоторых задачах вы визуально сможете определить абсциссу точки касания.

Отмечу, что таким способом можно решить задачу, если абсцисса целое число или целое с половиной, например 1,5; – 2,5; –3,5 и так далее. Если же точка пересечения «непонятна», то есть, нельзя точно и уверенно определить абсциссу (например, визуально сложно определить 3,2; 5,7 …), то точное решение даст первый способ.

Если вы решили задачу этим способом и уверены в правильности решения, обязательно сделайте проверку. Подставьте полученную абсциссу в оба исходных уравнения, должны получится равные значения функций (ордината точки пересечения).

Решите самостоятельно:

Прямая у = 7х – 8 параллельна касательной к графику функции

у = х2 + 6х – 8

Найдите абсциссу точки касания.

Посмотреть решение

Прямая у = 6х + 4 является касательной к графику функции

у = х3 – 3х2 + 9х + 3

Найдите абсциссу точки касания.

Из геометрического смысла производной функции известно, что она (производная) равна угловому коэффициенту касательной.

Известно, что угловой коэффициент прямой вида у = kх + b это число k.

Значит, угловой коэффициент прямой у = 6х + 4 равен 6. Таким образом,

Решая квадратное уравнение, получим:

Получили два равных корня. Таким образом, абсцисса точки касания равна 1.

Ответ: 1

Решите самостоятельно:

Прямая у = – 4х – 11 является касательной к графику функции